Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
Nature. 2020 Feb;578(7793):75-81. doi: 10.1038/s41586-020-1939-z. Epub 2020 Feb 5.
Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices. Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain. The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities.
氧化物材料表现出广泛的功能特性,这些特性是下一代电子、自旋电子、磁电、神经形态和能量转换存储设备所需要的。通过堆叠这些材料的层来制造异质结构,可以将它们的物理功能耦合起来,并且可以通过施加应变进一步提高。用于异质集成和应变应用的主要方法一直是外延生长,这极大地限制了可能的材料组合以及将复杂氧化物与成熟半导体技术集成的能力。此外,氧化物薄膜的关键物理性能,如压电性和磁致伸缩性,会受到衬底夹持效应的严重削弱。在这里,我们展示了一种通用的机械剥离方法,可以从各种具有不同晶体取向的钙钛矿、尖晶石和石榴石晶体结构的复杂氧化物材料中制备出独立的单晶膜。此外,我们通过直接堆叠具有不同晶体结构和取向的这种独立膜来制造人工异质结构并混合它们的物理性质,这是传统方法无法实现的。我们的结果为堆叠和耦合三维结构建立了一个平台,类似于基于二维材料的异质结构,以增强器件功能。