Loeb Norman G, Su Wenying, Kato Seiji
NASA Langley Research Center, Hampton, VA USA.
Curr Clim Change Rep. 2016;2(4):170-178. doi: 10.1007/s40641-016-0047-5. Epub 2016 Sep 1.
While climate models and observations generally agree that climate feedbacks collectively amplify the surface temperature response to radiative forcing, the strength of the feedback estimates varies greatly, resulting in appreciable uncertainty in equilibrium climate sensitivity. Because climate feedbacks respond differently to different spatial variations in temperature, short-term observational records have thus far only provided a weak constraint for climate feedbacks operating under global warming. Further complicating matters is the likelihood of considerable time variation in the effective global climate feedback parameter under transient warming. There is a need to continue to revisit the underlying assumptions used in the traditional forcing-feedback framework, with an emphasis on how climate models and observations can best be utilized to reduce the uncertainties. Model simulations can also guide observational requirements and provide insight on how the observational record can most effectively be analyzed in order to make progress in this critical area of climate research.
虽然气候模型和观测结果总体上一致认为,气候反馈共同放大了地表温度对辐射强迫的响应,但反馈估计的强度差异很大,导致平衡气候敏感性存在明显的不确定性。由于气候反馈对温度的不同空间变化有不同的响应,迄今为止,短期观测记录对全球变暖下运行的气候反馈仅提供了微弱的约束。在瞬态变暖情况下,有效全球气候反馈参数存在相当大的时间变化可能性,这使得情况更加复杂。有必要继续重新审视传统强迫-反馈框架中使用的基本假设,重点是如何最好地利用气候模型和观测结果来减少不确定性。模型模拟还可以指导观测需求,并提供有关如何最有效地分析观测记录的见解,以便在这一气候研究的关键领域取得进展。