Annapureddy Amarnath R, Angraal Suveen, Caraballo Cesar, Grimshaw Alyssa, Huang Chenxi, Mortazavi Bobak J, Krumholz Harlan M
1Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT USA.
2Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT USA.
NPJ Digit Med. 2020 Jan 31;3:13. doi: 10.1038/s41746-020-0223-9. eCollection 2020.
Machine learning (ML) techniques have become ubiquitous and indispensable for solving intricate problems in most disciplines. To determine the extent of funding for clinical research projects applying ML techniques by the National Institutes of Health (NIH) in 2017, we searched the NIH Research Portfolio Online Reporting Tools Expenditures and Results (RePORTER) system using relevant keywords. We identified 535 projects, which together received a total of $264 million, accounting for 2% of the NIH extramural budget for clinical research.
机器学习(ML)技术在解决大多数学科的复杂问题方面已变得无处不在且不可或缺。为确定美国国立卫生研究院(NIH)在2017年对应用ML技术的临床研究项目的资助规模,我们使用相关关键词搜索了NIH研究项目在线报告工具支出与结果(RePORTER)系统。我们识别出535个项目,这些项目总共获得了2.64亿美元的资助,占NIH临床研究院外预算的2%。