Suppr超能文献

固态 F NMR 化学位移在由卤素键连接的平面正方形镍氟化物配合物中的研究。

Solid-State F NMR Chemical Shift in Square-Planar Nickel-Fluoride Complexes Linked by Halogen Bonds.

机构信息

Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway.

Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom.

出版信息

Inorg Chem. 2023 Mar 27;62(12):4835-4846. doi: 10.1021/acs.inorgchem.2c04063. Epub 2023 Mar 15.

Abstract

The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the F SSNMR chemical shifts previously measured in a family of square-planar Ni-L-iodoaryl-fluoride (L = PEt) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; 2018, 9, 3767-3781]. To understand how the F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in -[NiF(2,3,5,6-CFI)(PEt)], -[NiF(2,3,4,5-CFI)(PEt)], and -[NiF(CF)(PEt)] in the solid state, where a XB is present in the two former systems but not in the last. We perform the F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σ orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.

摘要

卤键 (XB) 是一类高度定向的非共价相互作用,已被实验和计算研究广泛探索。然而,XB 的 NMR 特征引起的关注有限。固体核磁共振 (SSNMR) 化学位移张量的预测和分析提供了更好地理解 XB 相互作用的有用策略。在这项工作中,我们采用一种计算方案来模拟和分析以前在一系列正方形平面 Ni-L-碘芳基-氟化物 (L = PEt) 配合物中测量的 F SSNMR 化学位移,这些配合物能够形成由 NiF···I(C)卤键保持的自互补网络[Thangavadivale, V.; 2018, 9, 3767-3781]。为了了解 XB 如何影响镍键合氟化物的 NMR 共振,我们研究了在固体状态下,存在 XB 的-[NiF(2,3,5,6-CFI)(PEt)]、-[NiF(2,3,4,5-CFI)(PEt)]和-[NiF(CF)(PEt)]中镍键合氟化物的屏蔽的起源,而在最后一个系统中则不存在 XB。我们在周期性和分子模型中进行 F NMR 化学位移计算。结果表明,晶体堆积对 XB 的 NMR 特征几乎没有影响,并且可以成功地用通过 XB 相互作用的一对分子来模拟 NMR。因此,固态 NMR 和溶液 NMR 之间观察到的化学位移差异基本上可以归因于 XB 相互作用。氟化物的高屏蔽及其驱动贡献,即化学位移张量中屏蔽最大的分量,在 2c-ZORA 水平上得到很好的再现。对控制屏蔽的因素的分析表明,最高占据的 Ni/F 轨道如何在垂直于 Ni-F 键和垂直于配位平面的方向上屏蔽氟化物。这种屏蔽来自 Ni(3d)/F(2p 孤对)轨道与空 σ 轨道的磁耦合,从而合理地解释了该方向上氟化物的极高场(屏蔽)共振。我们表明这些特征是正方形平面镍氟化物配合物的特征。在卤键合体系中,氟化物的去屏蔽归因于占据和空轨道之间的能量间隙增加,这主要负责顺磁项,特别是在最屏蔽的方向上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验