Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , 46980 Paterna, Valencia , Spain.
Instituto de Tecnología Química (UPV-CSIC) , Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Avda. de los Naranjos s/n , 46022 Valencia , Spain.
Acc Chem Res. 2020 Feb 18;53(2):520-531. doi: 10.1021/acs.accounts.9b00609. Epub 2020 Feb 6.
Since the advent of the first metal-organic frameworks (MOFs), we have witnessed an explosion of captivating architectures with exciting physicochemical properties and applications in a wide range of fields. This, in part, can be understood under the light of their rich host-guest chemistry and the possibility to use single-crystal X-ray diffraction (SC-XRD) as a basic characterization tool. Moreover, chemistry on preformed MOFs, applying recent developments in template-directed synthesis and postsynthetic methodologies (PSMs), has shown to be a powerful synthetic tool to (i) tailor MOFs channels of known topology via single-crystal to single-crystal (SC-SC) processes, (ii) impart higher degrees of complexity and heterogeneity within them, and most importantly, (iii) improve their capabilities toward applications with respect to the parent MOFs. However, the unique properties of MOFs have been, somehow, limited and underestimated. This is clearly reflected on the use of MOFs as chemical nanoreactors, which has been barely uncovered. In this Account, we bring together our recent advances on the construction of MOFs with appealing properties to act as chemical nanoreactors and be used to synthesize and stabilize, within their channels, catalytically active species that otherwise could be hardly accessible. First, through two relevant examples, we present the potential of the metalloligand approach to build highly robust and crystalline oxamato- and oxamidato-MOFs with tailored channels, in terms of size, charge and functionality. These are initial requisites to have a playground where we can develop and fully take advantage of singular properties of MOFs as well as visualize/understand the processes that take place within MOFs pores and somehow make structure-functionalities correlations and develop more performant MOFs nanoreactors. Then, we describe how to exploit the unique and singular features that offer each of these MOFs confined space for (i) the incorporation and stabilization of metals salts and complexes, (ii) the stepwise synthesis of subnanometric metal clusters (SNMCs), and (iii) the confined-space self-assembly of supramolecular coordination complexes (SCCs), by means of PSMs and underpinned by SC-XRD. The strategy outlined here has led to unique rewards such as the highly challenging gram-scale preparation of stable and well-defined ligand-free SNMCs, exhibiting outstanding catalytic activities, and the preparation of unique SCCs, different to those assembled in solution, with enhanced stabilities, catalytic activities, recyclabilities, and selectivities. The results presented in this Accounts are just a few recent examples, but highly encouraging, of the large potential way of MOFs acting as chemical nanoreactors. More work is needed to found the boundaries and fully understand the chemistry in the confined space. In this sense, mastering the synthetic chemistry of discrete organic molecules and inorganic complexes has basically changed our way of live. Thus, achieving the same degree of control on extended hybrid networks will open new frontiers of knowledge with unforeseen possibilities. We aim to stimulate the interest of researchers working in broadly different fields to fully unleash the host-guest chemistry in MOFs as chemical nanoreactors with exclusive functional species.
自第一类金属-有机骨架(MOFs)问世以来,我们见证了具有令人兴奋的物理化学性质和广泛应用领域的迷人结构的爆炸式增长。部分原因可以从其丰富的主客体化学和使用单晶 X 射线衍射(SC-XRD)作为基本表征工具的可能性来理解。此外,应用于预形成 MOFs 的化学,利用模板导向合成和后合成方法学(PSMs)的最新进展,已被证明是一种强大的合成工具,可以(i)通过单晶到单晶(SC-SC)过程对已知拓扑结构的 MOFs 通道进行定制,(ii)在其中赋予更高程度的复杂性和异质性,最重要的是,(iii)提高它们相对于母体 MOFs 的应用能力。然而,MOFs 的独特性质在某种程度上受到了限制和低估。这在 MOFs 作为化学纳米反应器的使用上明显反映出来,而这方面的应用几乎没有被揭示。在本报告中,我们结合了我们最近在构建具有吸引力性质的 MOFs 方面的进展,这些 MOFs 可以作为化学纳米反应器,用于在其通道内合成和稳定催化活性物质,否则这些物质很难获得。首先,通过两个相关的例子,我们展示了金属配体方法构建具有尺寸、电荷和功能定制通道的高度坚固和结晶的氧甲酸盐和氧酰胺 MOFs 的潜力。这些是在 MOFs 孔内发展和充分利用 MOFs 独特性质以及可视化/理解发生的过程、在某种程度上建立结构-功能相关性以及开发更高效的 MOFs 纳米反应器方面发挥作用的初始要求。然后,我们描述了如何利用这些 MOFs 提供的独特和独特的特征来(i)容纳和稳定金属盐和配合物,(ii)逐步合成亚纳米金属簇(SNMCs),以及(iii)通过 PSMs 并以 SC-XRD 为支撑,在受限空间内自组装超分子配位配合物(SCCs)。这里概述的策略带来了独特的回报,例如以克为单位制备稳定且定义明确的无配体 SNMCs 的极具挑战性的工作,这些 SNMCs 表现出出色的催化活性,以及制备独特的 SCCs,与在溶液中组装的不同,具有增强的稳定性、催化活性、可回收性和选择性。本报告中呈现的结果只是 MOFs 作为化学纳米反应器的巨大潜力的几个最近的例子,但极具鼓舞性。需要做更多的工作来发现边界并充分理解受限空间内的化学。在这方面,掌握离散有机分子和无机配合物的合成化学基本上改变了我们的生活方式。因此,在扩展的混合网络上实现相同程度的控制将开辟具有预见可能性的新知识前沿。我们的目标是激发在广泛不同领域工作的研究人员的兴趣,以充分释放 MOFs 作为具有独特功能物质的化学纳米反应器的主客体化学。