Suppr超能文献

利用少样本学习自动检测眼底照片中的罕见病变。

Automatic detection of rare pathologies in fundus photographs using few-shot learning.

机构信息

Inserm, UMR 1101, Brest, F-29200, France.

Univ Bretagne Occidentale, Brest, F-29200, France; Inserm, UMR 1101, Brest, F-29200, France.

出版信息

Med Image Anal. 2020 Apr;61:101660. doi: 10.1016/j.media.2020.101660. Epub 2020 Jan 28.

Abstract

In the last decades, large datasets of fundus photographs have been collected in diabetic retinopathy (DR) screening networks. Through deep learning, these datasets were used to train automatic detectors for DR and a few other frequent pathologies, with the goal to automate screening. One challenge limits the adoption of such systems so far: automatic detectors ignore rare conditions that ophthalmologists currently detect, such as papilledema or anterior ischemic optic neuropathy. The reason is that standard deep learning requires too many examples of these conditions. However, this limitation can be addressed with few-shot learning, a machine learning paradigm where a classifier has to generalize to a new category not seen in training, given only a few examples of this category. This paper presents a new few-shot learning framework that extends convolutional neural networks (CNNs), trained for frequent conditions, with an unsupervised probabilistic model for rare condition detection. It is based on the observation that CNNs often perceive photographs containing the same anomalies as similar, even though these CNNs were trained to detect unrelated conditions. This observation was based on the t-SNE visualization tool, which we decided to incorporate in our probabilistic model. Experiments on a dataset of 164,660 screening examinations from the OPHDIAT screening network show that 37 conditions, out of 41, can be detected with an area under the ROC curve (AUC) greater than 0.8 (average AUC: 0.938). In particular, this framework significantly outperforms other frameworks for detecting rare conditions, including multitask learning, transfer learning and Siamese networks, another few-shot learning solution. We expect these richer predictions to trigger the adoption of automated eye pathology screening, which will revolutionize clinical practice in ophthalmology.

摘要

在过去的几十年里,糖尿病视网膜病变(DR)筛查网络已经收集了大量的眼底照片数据集。通过深度学习,这些数据集被用于训练自动 DR 检测器和其他一些常见病变的检测器,目标是实现筛查自动化。到目前为止,有一个挑战限制了这些系统的采用:自动检测器忽略了眼科医生目前检测到的罕见情况,如视乳头水肿或前部缺血性视神经病变。原因是标准的深度学习需要这些罕见情况的太多例子。然而,这种限制可以通过少样本学习来解决,这是一种机器学习范例,其中分类器必须在仅给定少数此类类别示例的情况下,对训练中未见过的新类别进行泛化。本文提出了一种新的少样本学习框架,该框架扩展了用于常见情况的卷积神经网络(CNN),并使用一种用于罕见情况检测的无监督概率模型进行扩展。这是基于这样的观察,即 CNN 经常将包含相同异常的照片视为相似,即使这些 CNN 是为检测不相关的情况而训练的。这一观察是基于 t-SNE 可视化工具得出的,我们决定将其纳入我们的概率模型中。在来自 OPHDIAT 筛查网络的 164660 次筛查检查的数据集上进行的实验表明,41 种情况下的 37 种(平均 AUC:0.938)可以通过 AUC 大于 0.8 来检测。特别是,该框架在检测罕见情况方面明显优于其他框架,包括多任务学习、迁移学习和孪生网络,这也是另一种少样本学习解决方案。我们期望这些更丰富的预测能够引发自动眼部病理筛查的采用,这将彻底改变眼科的临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验