Suppr超能文献

一种新型的基于 NanoBiT 的检测方法实时监测脂蛋白脂肪酶和 GPIHBP1 之间的相互作用。

A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time.

机构信息

Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242.

Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843.

出版信息

J Lipid Res. 2020 Apr;61(4):546-559. doi: 10.1194/jlr.D119000388. Epub 2020 Feb 6.

Abstract

The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex.

摘要

脂蛋白脂肪酶(LPL)将富含甘油三酯的脂蛋白中的甘油三酯水解,对于将甘油三酯衍生的脂肪酸输送到组织中至关重要,包括心脏、骨骼肌和脂肪组织。生理活性的 LPL 通常与内皮细胞蛋白糖基磷脂酰肌醇锚定高密度脂蛋白结合蛋白 1(GPIHBP1)结合,GPIHBP1 将 LPL 转运穿过内皮细胞,将 LPL 锚定在血管壁上,并稳定 LPL 活性。LPL-GPIHBP1 结合的破坏会显著改变甘油三酯代谢和脂质分布。在这项研究中,我们修改了 NanoLuc®Binary Technology 分裂荧光酶系统,开发了一种新的测定法,实时监测 LPL 与内皮细胞上的 GPIHBP1 的结合。我们使用内皮脂肪酶和 LPL 的突变版本验证了该测定法的特异性和灵敏度,发现该测定法可靠且特异性地检测了 LPL 与 GPIHBP1 之间的相互作用。然后,我们研究了各种内源性和外源性 LPL 介导的脂肪分解抑制剂,以确定它们是否能够破坏 LPL 与 GPIHBP1 的结合。我们发现血管生成素样蛋白 4(ANGPTL4)和 ANGPTL3-ANGPTL8 复合物破坏了 LPL 和 GPIHBP1 的相互作用,而我们测试的外源性 LPL 阻滞剂(胆酸钠、泊洛沙姆 407 和四氢拉贝洛尔)则没有。我们还发现乳糜微粒可以使 LPL 从 GPIHBP1 解离,并发现有证据表明这种解离部分是由脂肪分解产生的脂肪酸介导的。这些结果表明该测定法能够监测 LPL-GPIHBP1 结合,并探究各种试剂如何影响这一重要复合物。

相似文献

1
A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time.
J Lipid Res. 2020 Apr;61(4):546-559. doi: 10.1194/jlr.D119000388. Epub 2020 Feb 6.
2
Angiopoietin-like 4 Modifies the Interactions between Lipoprotein Lipase and Its Endothelial Cell Transporter GPIHBP1.
J Biol Chem. 2015 May 8;290(19):11865-77. doi: 10.1074/jbc.M114.623769. Epub 2015 Mar 25.
3
ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase.
Mol Metab. 2017 Oct;6(10):1137-1149. doi: 10.1016/j.molmet.2017.06.014. Epub 2017 Jun 29.
5
Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression.
Clin Exp Nephrol. 2012 Apr;16(2):238-43. doi: 10.1007/s10157-011-0549-3. Epub 2011 Oct 19.
7
Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL.
J Lipid Res. 2017 Sep;58(9):1893-1902. doi: 10.1194/jlr.M078220. Epub 2017 Jul 10.
8
GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4.
J Lipid Res. 2009 Dec;50(12):2421-9. doi: 10.1194/jlr.M900145-JLR200. Epub 2009 Jun 21.
9
Structure of lipoprotein lipase in complex with GPIHBP1.
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10360-10365. doi: 10.1073/pnas.1820171116. Epub 2019 May 9.

引用本文的文献

1
ANGPTL4: A Comprehensive Review of 25 Years of Research.
Cancers (Basel). 2025 Jul 16;17(14):2364. doi: 10.3390/cancers17142364.
2
Lipoprotein Lipase: Structure, Function, and Genetic Variation.
Genes (Basel). 2025 Jan 5;16(1):55. doi: 10.3390/genes16010055.
3
Macromolecular Interactions of Lipoprotein Lipase (LPL).
Subcell Biochem. 2024;104:139-179. doi: 10.1007/978-3-031-58843-3_8.
4
The response to fasting and refeeding reveals functional regulation of lipoprotein lipase proteoforms.
Front Physiol. 2023 Oct 16;14:1271149. doi: 10.3389/fphys.2023.1271149. eCollection 2023.
5
Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site.
Nat Commun. 2023 May 4;14(1):2569. doi: 10.1038/s41467-023-38243-9.
6
Split luciferase-based assay to detect botulinum neurotoxins using hiPSC-derived motor neurons.
Commun Biol. 2023 Jan 30;6(1):122. doi: 10.1038/s42003-023-04495-w.
8
Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia.
Int J Mol Sci. 2021 Jul 7;22(14):7310. doi: 10.3390/ijms22147310.

本文引用的文献

1
On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity.
J Lipid Res. 2019 Apr;60(4):783-793. doi: 10.1194/jlr.M088807. Epub 2019 Jan 27.
2
Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1723-1732. doi: 10.1073/pnas.1817984116. Epub 2018 Dec 17.
3
A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E6020-E6029. doi: 10.1073/pnas.1806774115. Epub 2018 Jun 13.
4
ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase.
Mol Metab. 2017 Oct;6(10):1137-1149. doi: 10.1016/j.molmet.2017.06.014. Epub 2017 Jun 29.
5
Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting.
Mol Metab. 2017 Jun 19;6(8):809-818. doi: 10.1016/j.molmet.2017.06.007. eCollection 2017 Aug.
6
Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease.
N Engl J Med. 2017 Jul 20;377(3):211-221. doi: 10.1056/NEJMoa1612790. Epub 2017 May 24.
7
Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides.
N Engl J Med. 2017 Jul 20;377(3):222-232. doi: 10.1056/NEJMoa1701329. Epub 2017 May 24.
8
Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia.
N Engl J Med. 2017 Apr 27;376(17):1647-1658. doi: 10.1056/NEJMoa1611930. Epub 2017 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验