Suppr超能文献

一种预测早期非小细胞肺癌患者总生存期的列线图。

A nomogram to predict overall survival of patients with early stage non-small cell lung cancer.

作者信息

Zhang Jiahui, Fan Jingyi, Yin Rong, Geng Liguo, Zhu Meng, Shen Wei, Wang Yuzhuo, Cheng Yang, Li Zhihua, Dai Juncheng, Jin Guangfu, Hu Zhibin, Ma Hongxia, Xu Lin, Shen Hongbing

机构信息

Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.

Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China.

出版信息

J Thorac Dis. 2019 Dec;11(12):5407-5416. doi: 10.21037/jtd.2019.11.53.

Abstract

BACKGROUND

Nomograms have been widely used for estimating cancer prognosis. The aim of this study was to construct a clinical nomogram that would well predict overall survival of early stage non-small cell lung cancer (NSCLC) patients after surgery resection.

METHODS

A total of 443 patients diagnosed with pathologic stage I and II NSCLC who had undergone curative resection without neoadjuvant chemotherapy or radiotherapy were recruited and analyzed. The log-rank test and multivariate Cox regression analysis were used to select the most significant predictors in the final nomogram for predicting overall survival. Furthermore, the model was validated by bootstrap methods and measured by concordance index (C-index) and calibration plots.

RESULTS

Four independent predictors for overall survival were identified and included into the delineation of the nomogram (tumor differentiation, station of sampled lymph nodes, pathologic T and pathologic N). The model showed comparatively stable discrimination (bootstrap-corrected C-index =0.622, 95% CI: 0.572-0.672) and good calibration.

CONCLUSIONS

We successfully developed a nomogram incorporating available clinicopathological variables to predict overall survival of early stage NSCLC patients after surgery resection, which might help clinician select better appropriate treatment decisions.

摘要

背景

列线图已广泛用于评估癌症预后。本研究的目的是构建一个临床列线图,以准确预测早期非小细胞肺癌(NSCLC)患者手术切除后的总生存期。

方法

共纳入443例经病理诊断为Ⅰ期和Ⅱ期NSCLC且未接受新辅助化疗或放疗而行根治性切除的患者并进行分析。采用对数秩检验和多因素Cox回归分析,以选择最终列线图中预测总生存期的最显著预测因素。此外,该模型通过自抽样法进行验证,并用一致性指数(C指数)和校准图进行评估。

结果

确定了四个总生存期的独立预测因素并纳入列线图描绘(肿瘤分化程度、取样淋巴结站别、病理T和病理N)。该模型显示出相对稳定的区分能力(自抽样法校正C指数=0.622,95%可信区间:0.572-0.672)和良好的校准。

结论

我们成功开发了一个纳入可用临床病理变量的列线图,以预测早期NSCLC患者手术切除后的总生存期,这可能有助于临床医生做出更合适的治疗决策。

相似文献

引用本文的文献

本文引用的文献

7
Nomograms in oncology: more than meets the eye.肿瘤学中的列线图:远不止表面所见。
Lancet Oncol. 2015 Apr;16(4):e173-80. doi: 10.1016/S1470-2045(14)71116-7.
8
Recurrence Risk-Scoring Model for Stage I Adenocarcinoma of the Lung.I期肺腺癌复发风险评分模型
Ann Surg Oncol. 2015 Nov;22(12):4089-97. doi: 10.1245/s10434-015-4411-9. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验