Huang Hao, Zhao Liang, Yu Qiao, Lin Panlong, Xu Jing, Yin Xianze, Chen Shaohua, Wang Hua, Wang Luoxin
Key Laboratory of Textile Fiber & Product (Ministry of Education), College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, China.
High-Tech Organic Fibers Key Laboratory of Sichuan Province, Sichuan Textile Science Research Institute, Chengdu 610072, Sichuan, China.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):11204-11213. doi: 10.1021/acsami.9b22338. Epub 2020 Feb 19.
In view of the sustainable and environmentally friendly characteristics of solar energy, solar water evaporation has been identified as a promising approach to mitigate the global water crises. However, it is still a great challenge to develop a portable, flexible, scalable, and high-performance solar water evaporation material. Herein, a bilayer-structured solar water evaporation material consisting of a top multiwalled carbon nanotube (MWCNT) layer and a bottom polyphenylene sulfide/fibrillated cellulose (PPS/FC) paper was fabricated via a simple vacuum filtration technology for efficient solar water evaporation. The MWCNT layer performs as a light absorber with a high solar absorptance (∼93%) in the wavelength range from 400 to 1200 nm and good light-to-heat conversion capability, while the bottom layer (porous network-structured PPS/FC paper) exhibits excellent water transporting ability, high temperature stability, and good thermal insulating capability (0.0467 W m K). Benefiting from the above advantages, an attractive water evaporation rate of 1.34 kg m h was achieved with near ∼95% efficiency under 1 sun irradiation (1 kW m). Moreover, the MWCNTs@PPS/FC paper maintains high solar evaporation efficiency after several cycles, indicating long-term durability and good reusability. Moreover, the collected clean water using the MWCNTs@PPS/FC paper from seawater of different salinities, simulated wastewater samples with different pH values or containing heavy metal ions, as well as industrial dyes, satisfy the drinkable water standard (defined by WHO), demonstrating excellent seawater desalination and wastewater purification capability. The advanced performances of the MWCNTs@PPS/FC paper could inspire novel paradigms of solar-driven water evaporation technologies in drinkable water collection.
鉴于太阳能具有可持续和环保的特性,太阳能水蒸发已被视为缓解全球水危机的一种有前景的方法。然而,开发一种便携式、柔性、可扩展且高性能的太阳能水蒸发材料仍然是一个巨大的挑战。在此,通过一种简单的真空过滤技术制备了一种由顶部多壁碳纳米管(MWCNT)层和底部聚苯硫醚/原纤化纤维素(PPS/FC)纸组成的双层结构太阳能水蒸发材料,用于高效太阳能水蒸发。MWCNT层作为光吸收体,在400至1200 nm波长范围内具有高太阳能吸收率(约93%)和良好的光热转换能力,而底层(多孔网络结构的PPS/FC纸)表现出优异的水传输能力、高温稳定性和良好的隔热能力(0.0467 W m K)。受益于上述优点,在1个太阳辐照(1 kW m)下实现了有吸引力的1.34 kg m h的水蒸发速率,效率接近95%。此外,MWCNTs@PPS/FC纸在经过几个循环后仍保持高太阳能蒸发效率,表明其具有长期耐久性和良好的可重复使用性。而且,使用MWCNTs@PPS/FC纸从不同盐度的海水中、不同pH值或含有重金属离子的模拟废水样品以及工业染料中收集的清洁水符合饮用水标准(由世界卫生组织定义),展示了优异的海水淡化和废水净化能力。MWCNTs@PPS/FC纸的先进性能可能会激发饮用水收集领域太阳能驱动水蒸发技术的新范例。