Suppr超能文献

使用深度神经网络对胶体进行全息特征描述和跟踪

CATCH: Characterizing and Tracking Colloids Holographically Using Deep Neural Networks.

机构信息

Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, United States.

出版信息

J Phys Chem B. 2020 Mar 5;124(9):1602-1610. doi: 10.1021/acs.jpcb.9b10463. Epub 2020 Feb 25.

Abstract

In-line holographic microscopy provides an unparalleled wealth of information about the properties of colloidal dispersions. Analyzing one colloidal particle's hologram with the Lorenz-Mie theory of light scattering yields the particle's three-dimensional position with nanometer precision while simultaneously reporting its size and refractive index with part-per-thousand resolution. Analyzing a few thousand holograms in this way provides a comprehensive picture of the particles that make up a dispersion, even for complex multicomponent systems. All of this valuable information comes at the cost of three computationally expensive steps: (1) identifying and localizing features of interest within recorded holograms, (2) estimating each particle's properties based on characteristics of the associated features, and finally (3) optimizing those estimates through pixel-by-pixel fits to a generative model. Here, we demonstrate an end-to-end implementation that is based entirely on machine-learning techniques. Characterizing and Tracking Colloids Holographically (CATCH) with deep convolutional neural networks is fast enough for real-time applications and otherwise outperforms conventional analytical algorithms, particularly for heterogeneous and crowded samples. We demonstrate this system's capabilities with experiments on free-flowing and holographically trapped colloidal spheres.

摘要

在线全息显微镜为胶体分散体的特性提供了无与伦比的丰富信息。用光的洛伦兹-米理论分析一个胶体粒子的全息图,可以以纳米精度得出粒子的三维位置,同时以千分之一的分辨率报告其大小和折射率。以这种方式分析几千个全息图,可以全面了解构成分散体的粒子,即使对于复杂的多组分系统也是如此。所有这些有价值的信息都是以三个计算成本高昂的步骤为代价的:(1)在记录的全息图中识别和定位感兴趣的特征,(2)根据相关特征估计每个粒子的特性,最后(3)通过逐像素拟合到生成模型来优化这些估计。在这里,我们展示了一个完全基于机器学习技术的端到端实现。基于深度卷积神经网络的胶体质点全息分析与跟踪(CATCH)速度足够快,可用于实时应用,在异构和拥挤的样本方面表现优于传统的分析算法。我们通过对自由流动和全息捕获胶体球的实验证明了该系统的功能。

相似文献

10
Digital in-line holography of microspheres.微球的数字同轴全息术
Appl Opt. 2002 Sep 1;41(25):5367-75. doi: 10.1364/ao.41.005367.

引用本文的文献

1
Deep learning in light-matter interactions.光与物质相互作用中的深度学习
Nanophotonics. 2022 Jun 14;11(14):3189-3214. doi: 10.1515/nanoph-2022-0197. eCollection 2022 Jul.
8
Interpreting holographic molecular binding assays with effective medium theory.用有效介质理论解释全息分子结合测定法。
Biomed Opt Express. 2020 Aug 24;11(9):5225-5236. doi: 10.1364/BOE.401103. eCollection 2020 Sep 1.

本文引用的文献

7
Introduction to the Maxwell Garnett approximation: tutorial.麦克斯韦·加尼特近似法介绍:教程
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):1244-56. doi: 10.1364/JOSAA.33.001244.
8
Holographic Characterization of Protein Aggregates.蛋白质聚集体的全息表征
J Pharm Sci. 2016 Mar;105(3):1074-85. doi: 10.1016/j.xphs.2015.12.018. Epub 2016 Feb 2.
9
Fast particle characterization using digital holography and neural networks.
Appl Opt. 2016 Jan 1;55(1):133-9. doi: 10.1364/AO.55.000133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验