Department of Surgery, University of Texas Medical Branch, Galveston, TX.
Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX.
J Am Coll Surg. 2020 Apr;230(4):562-571. doi: 10.1016/j.jamcollsurg.2019.12.029. Epub 2020 Feb 4.
Mitochondrial oxidative stress plays a prominent role in the development of burn-induced cardiac dysfunction. AMP-activated kinase (AMPK), an energy sensor, has a central role in the pathogenesis of heart failure. However, its role in cardiac dysfunction after burn injury is unclear. Our hypothesis is that burn injury acts through the AMPK-sirtuin 1-PGC1α-nuclear factor erythroid 2-related factor 2 (NFE2L2)-ARE signaling pathway, leading to cardiac mitochondrial impairment, resulting in cardiac dysfunction.
Male Sprague-Dawley rats underwent sham procedure or 60% total body surface area full-thickness burn. Echocardiograms were performed 24 hours post burn. Heart tissue was harvested at 24 hours post burn for biochemistry/molecular biologic analysis. AC16 cardiomyocytes were treated with either sham or burned rat serum (±AMPK inhibitor/AMPK activator/PGC1α activator) for evaluation of cardiomyocyte mitochondrial function by using seahorse in vitro.
Burn injury-induced cardiac dysfunction was measured by echocardiogram. Burn injury suppressed cardiac AMPK, sirtuin 1, and PGC1 expression, leading to acetylation of cardiomyocyte proteins. In addition, burn injury caused NFE2L2 and NFE2L2 regulated antioxidants (heme oxygenase 1, NADH quinone oxidoreductase 1, glutamatecysteine ligase catalytic subunit, manganese superoxide dismutase, and glutathione peroxidase) to decrease, resulting in cardiac oxidative stress. In vitro, AMPK1 activator and PGC1α agonist treatment improved Ac16 cell mitochondrial dysfunction, and AMPK1 inhibitor treatment worsened Ac16 cellular damage.
Burn-induced cardiac dysfunction and cardiac mitochondrial damage occur via the AMPK-sirtuin 1-PGC1α-NFE2L2-ARE signaling pathway. AMPK and PGC1α agonists might be promising therapeutic agents to reverse cardiac dysfunction after burn injury.
线粒体氧化应激在烧伤诱导的心脏功能障碍的发展中起着突出的作用。AMP 激活的蛋白激酶(AMPK)作为一种能量传感器,在心力衰竭的发病机制中起着核心作用。然而,其在烧伤后心脏功能障碍中的作用尚不清楚。我们的假设是,烧伤通过 AMPK-沉默信息调节因子 1-过氧化物酶体增殖物激活受体 γ 共激活因子 1α-核因子红细胞 2 相关因子 2(NFE2L2)-抗氧化反应元件信号通路起作用,导致心脏线粒体损伤,从而导致心脏功能障碍。
雄性 Sprague-Dawley 大鼠接受假手术或 60%全身体表面积全层烧伤。烧伤后 24 小时进行超声心动图检查。烧伤后 24 小时采集心脏组织进行生物化学/分子生物学分析。AC16 心肌细胞用假处理或烧伤大鼠血清(±AMPK 抑制剂/AMPK 激活剂/PGC1α 激活剂)处理,通过 Seahorse 在体外评估心肌细胞线粒体功能。
通过超声心动图测量烧伤诱导的心脏功能障碍。烧伤抑制了心脏 AMPK、沉默信息调节因子 1 和 PGC1α 的表达,导致心肌蛋白乙酰化。此外,烧伤导致 NFE2L2 和 NFE2L2 调节的抗氧化剂(血红素加氧酶 1、烟酰胺腺嘌呤二核苷酸醌氧化还原酶 1、谷氨酰胺半胱氨酸连接酶催化亚基、锰超氧化物歧化酶和谷胱甘肽过氧化物酶)减少,导致心脏氧化应激。在体外,AMPK1 激活剂和 PGC1α 激动剂治疗改善了 Ac16 细胞的线粒体功能障碍,而 AMPK1 抑制剂治疗则加重了 Ac16 细胞的损伤。
烧伤诱导的心脏功能障碍和心脏线粒体损伤是通过 AMPK-沉默信息调节因子 1-PGC1α-NFE2L2-ARE 信号通路发生的。AMPK 和 PGC1α 激动剂可能是逆转烧伤后心脏功能障碍的有前途的治疗药物。