Suppr超能文献

基于 GA-SVM 的滑坡地下水位预测模型的建立及影响因素分析。

Establishment of Landslide Groundwater Level Prediction Model Based on GA-SVM and Influencing Factor Analysis.

机构信息

Faculty of Engineering, China University of Geosciences, Wuhan, 430074, China.

School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China.

出版信息

Sensors (Basel). 2020 Feb 5;20(3):845. doi: 10.3390/s20030845.

Abstract

The monitoring and prediction of the landslide groundwater level is a crucial part of landslide early warning systems. In this study, Tangjiao landslide in the Three Gorges Reservoir area (TGRA) in China was taken as a case study. Three groundwater level monitoring sensors were installed in different locations of the landslide. The monitoring data indicated that the fluctuation of groundwater level is significantly consistent with rainfall and reservoir level in time, but there is a lag. In addition, there is a spatial difference in the impact of reservoir levels on the landslide groundwater level. The data of two monitoring locations were selected for establishing the prediction model of groundwater. Combined with the qualitative and quantitative analysis, the influencing factors were selected, respectively, to establish the hybrid Genetic Algorithm-Support Vector Machine (GA-SVM) prediction model. The single-factor GA-SVM without considering influencing factors and the backpropagation neural network (BPNN) model were adopted to make comparisons. The results showed that the multi-factor GA-SVM performed the best, followed by multi-factor BPNN and single-factor GA-SVM. We found that the prediction accuracy can be improved by considering the influencing factor. The proposed GA-SVM model combines the advantages of each algorithm; it can effectively construct the response relationship between groundwater level fluctuations and influencing factors. Above all, the multi-factor GA-SVM is an effective method for the prediction of landslides groundwater in the TGRA.

摘要

滑坡地下水位的监测和预测是滑坡预警系统的关键部分。本研究以中国三峡库区的唐家崖滑坡为例。在滑坡的不同位置安装了三个地下水监测传感器。监测数据表明,地下水位的波动与降雨和库水位在时间上具有显著的一致性,但存在滞后。此外,库水位对滑坡地下水位的影响存在空间差异。选择两个监测位置的数据建立地下水位预测模型。结合定性和定量分析,选择影响因素,分别建立混合遗传算法-支持向量机(GA-SVM)预测模型。考虑影响因素的单因素 GA-SVM 与不考虑影响因素的反向传播神经网络(BPNN)模型进行了比较。结果表明,多因素 GA-SVM 表现最好,其次是多因素 BPNN 和单因素 GA-SVM。研究发现,考虑影响因素可以提高预测精度。提出的 GA-SVM 模型结合了各算法的优势;它可以有效地构建地下水位波动与影响因素之间的响应关系。总之,多因素 GA-SVM 是预测三峡库区滑坡地下水的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3bb/7038680/e723f1397c51/sensors-20-00845-g001.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验