Suppr超能文献

图像搜索与定位任务的受试者工作特征(ROC)分析。

Receiver Operating Characteristic (ROC) Analysis of Image Search-and-Localize Tasks.

机构信息

Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC2026, Chicago, IL 60637.

出版信息

Acad Radiol. 2020 Dec;27(12):1742-1750. doi: 10.1016/j.acra.2019.12.020. Epub 2020 Feb 5.

Abstract

RATIONALE AND OBJECTIVES

Receiver operating characteristic (ROC) analysis for the common image search-and-localize task, in which readers search an image for lesion or lesions not knowing a priori any exists, has been studied for over four decades. However, a satisfactory solution seems elusive.

MATERIALS AND METHODS

We show that the ROC curve predictive of clinical outcomes where readers are penalized appropriately for not correctly localizing known lesions cannot be obtained because it is a missing data problem. Further, this ROC curve is between the case-based ROC curve where readers are not penalized and the lesion-based ROC curve where penalty applies. Moreover, the lesion-based ROC curve is the LROC curve proposed by Starr et al. We show maximum-likelihood (ML) estimation of the LROC curve, validation of this procedure with Monte Carlo simulations, and its application to reader ROC datasets.

RESULTS

Monte Carlo simulations validated ML estimation of area under the LROC curve (AUC) and its variance. Example applications showed that ML estimate of LROC curve fits experimental datasets.

CONCLUSION

The ROC curve predictive of clinical performance cannot be estimated from reader ROC data alone because it is a missing data problem, and is between the case-based ROC curve where readers are not penalized for not correctly identifying known lesions and the lesion-based ROC curve where penalty applies. The lesion-based ROC curve is the LROC curve proposed by Starr et al. and can be estimated via ML estimation.

摘要

原理和目的

在常见的图像搜索和定位任务中,读者在不知道任何先验存在病变的情况下搜索图像中的病变或多个病变,已经进行了超过四十年的接收者操作特征(ROC)分析。然而,似乎还没有令人满意的解决方案。

材料和方法

我们表明,由于存在缺失数据问题,无法获得预测临床结果的 ROC 曲线,在这种情况下,读者如果未能正确定位已知病变,将受到适当的惩罚。此外,这条 ROC 曲线位于不惩罚读者的基于病例的 ROC 曲线和适用于惩罚的基于病变的 ROC 曲线之间。此外,基于病变的 ROC 曲线是 Starr 等人提出的 LROC 曲线。我们展示了 LROC 曲线的最大似然(ML)估计,通过蒙特卡罗模拟验证了该程序,并将其应用于读者 ROC 数据集。

结果

蒙特卡罗模拟验证了 LROC 曲线下面积(AUC)及其方差的 ML 估计。示例应用表明,LROC 曲线的 ML 估计拟合实验数据集。

结论

不能仅从读者 ROC 数据估计预测临床性能的 ROC 曲线,因为这是一个缺失数据问题,并且位于不惩罚读者未能正确识别已知病变的基于病例的 ROC 曲线和适用于惩罚的基于病变的 ROC 曲线之间。基于病变的 ROC 曲线是 Starr 等人提出的 LROC 曲线,可以通过 ML 估计进行估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验