Suppr超能文献

确定单细胞 RNA-seq 实验中的测序深度。

Determining sequencing depth in a single-cell RNA-seq experiment.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nat Commun. 2020 Feb 7;11(1):774. doi: 10.1038/s41467-020-14482-y.

Abstract

An underlying question for virtually all single-cell RNA sequencing experiments is how to allocate the limited sequencing budget: deep sequencing of a few cells or shallow sequencing of many cells? Here we present a mathematical framework which reveals that, for estimating many important gene properties, the optimal allocation is to sequence at a depth of around one read per cell per gene. Interestingly, the corresponding optimal estimator is not the widely-used plug-in estimator, but one developed via empirical Bayes.

摘要

对于几乎所有单细胞 RNA 测序实验来说,一个基本问题是如何分配有限的测序预算:对少数细胞进行深度测序,还是对多数细胞进行浅度测序?在这里,我们提出了一个数学框架,该框架揭示了,对于估计许多重要的基因特性,最佳分配方案是对每个细胞每个基因进行大约一个读取深度的测序。有趣的是,相应的最优估计器不是广泛使用的插件估计器,而是通过经验贝叶斯方法开发的估计器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7005864/016a19716fa4/41467_2020_14482_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验