Suppr超能文献

基因交配动态演化理论:基本假设、完全可解模型与解析解。

Gene-mating dynamic evolution theory: fundamental assumptions, exactly solvable models and analytic solutions.

机构信息

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada.

出版信息

Theory Biosci. 2020 Jun;139(2):105-134. doi: 10.1007/s12064-020-00309-3. Epub 2020 Feb 7.

Abstract

Fundamental properties of macroscopic gene-mating dynamic evolutionary systems are investigated. A model is studied to describe a large class of systems within population genetics. We focus on a single locus, any number of alleles in a two-gender dioecious population. Our governing equations are time-dependent continuous differential equations labeled by a set of parameters, where each parameter stands for a population percentage carrying certain common genotypes. The full parameter space consists of all allowed parameters of these genotype frequencies. Our equations are uniquely derived from four fundamental assumptions within any population: (1) a closed system; (2) average-and-random mating process (mean-field behavior); (3) Mendelian inheritance; and (4) exponential growth and exponential death. Even though our equations are nonlinear with time-evolutionary dynamics, we have obtained an exact analytic time-dependent solution and an exactly solvable model. Our findings are summarized from phenomenological and mathematical viewpoints. From the phenomenological viewpoint, any initial parameter of genotype frequencies of a closed system will eventually approach a stable fixed point. Under time evolution, we show (1) the monotonic behavior of genotype frequencies, (2) any genotype or allele that appears in the population will never become extinct, (3) the Hardy-Weinberg law and (4) the global stability without chaos in the parameter space. To demonstrate the experimental evidence for our theory, as an example, we show a mapping from the data of blood type genotype frequencies of world ethnic groups to our stable fixed-point solutions. From the mathematical viewpoint, our highly symmetric governing equations result in continuous global stable equilibrium solutions: these solutions altogether consist of a continuous curved manifold as a subspace of the whole parameter space of genotype frequencies. This fixed-point manifold is a global stable attractor known as the Hardy-Weinberg manifold, attracting any initial point in any Euclidean fiber bounded within the genotype frequency space to the fixed point where this fiber is attached. The stable base manifold and its attached fibers form a fiber bundle, which fills in the whole genotype frequency space completely. We can define the genetic distance of two populations as their geodesic distance on the equilibrium manifold. In addition, the modification of our theory under the process of natural selection and mutation is addressed.

摘要

研究了宏观基因交配动态进化系统的基本性质。研究了一个模型来描述群体遗传学中的一大类系统。我们专注于一个单一的基因座,在一个两性二倍体种群中,有任意数量的等位基因。我们的控制方程是带有一组参数的时变连续微分方程,其中每个参数代表携带某些常见基因型的特定种群百分比。完整的参数空间由这些基因型频率的所有允许参数组成。我们的方程是从任何群体内的四个基本假设中唯一推导出来的:(1)封闭系统;(2)平均随机交配过程(平均场行为);(3)孟德尔遗传;(4)指数增长和指数死亡。尽管我们的方程是随时间演化的非线性方程,但我们已经得到了一个精确的时间相关解析解和一个完全可解的模型。我们的发现从现象学和数学角度进行了总结。从现象学的角度来看,封闭系统中任何初始基因型频率参数最终都会趋近于一个稳定的平衡点。在时间演化过程中,我们展示了(1)基因型频率的单调行为,(2)在种群中出现的任何基因型或等位基因都不会灭绝,(3)哈迪-温伯格定律和(4)参数空间中的混沌全局稳定性。为了证明我们理论的实验证据,作为一个例子,我们展示了一个将世界族群的血型基因型频率数据映射到我们的稳定平衡点解的映射。从数学的角度来看,我们高度对称的控制方程导致了连续的全局稳定平衡解:这些解共同构成了整个基因型频率参数空间的连续弯曲流形的子空间。这个平衡点流形是一个已知的哈迪-温伯格流形的全局稳定吸引子,吸引了基因型频率空间内任何有界欧几里得纤维的初始点到该纤维所附着的平衡点。稳定的基流形及其附着的纤维形成了一个纤维丛,完全填充了整个基因型频率空间。我们可以将两个群体的遗传距离定义为它们在平衡流形上的测地线距离。此外,还讨论了我们的理论在自然选择和突变过程中的修正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验