Bürger R
Institut für Mathematik, Universität Wien, Austria.
J Math Biol. 1991;30(2):199-213. doi: 10.1007/BF00160336.
A new approach for describing the evolution of polygenic traits subject to selection and mutation is presented. Differential equations for the change of cumulants of the allelic frequency distribution at a particular locus and for the cumulants of the distributions of genotypic and phenotypic values are derived. The derivation is based on the assumptions of random mating, no sex differences, absence of random drift, additive gene action, linkage equilibrium, and Hardy-Weinberg proportions. Cumulants are a set of parameters that, like moments, describe the shape of a probability density. Compared with moments, however, they have properties that make them a much more convenient tool for investigating polygenic traits. Applications to directional and stabilizing selection are given.
本文提出了一种描述受选择和突变影响的多基因性状进化的新方法。推导了特定基因座上等位基因频率分布累积量变化以及基因型和表型值分布累积量变化的微分方程。推导基于随机交配、无性别差异、无随机漂变、加性基因作用、连锁平衡和哈迪-温伯格比例等假设。累积量是一组参数,与矩一样,描述概率密度的形状。然而,与矩相比,它们具有一些特性,使其成为研究多基因性状更方便的工具。文中给出了定向选择和稳定选择的应用。