Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA.
J Appl Clin Med Phys. 2020 Mar;21(3):68-74. doi: 10.1002/acm2.12826. Epub 2020 Feb 8.
Treating deep-seated bulky tumors with traditional single-field Cerrobend GRID-blocks has many limitations such as suboptimal target coverage and excessive skin toxicity. Heavy traditional GRID-blocks are a concern for patient safety at various gantry-angles and dosimetric detail is not always available without a GRID template in user's treatment planning system. Herein, we propose a simple, yet clinically useful multileaf collimator (MLC)-based three-dimensional (3D)-crossfire technique to provide sufficient target coverage, reduce skin dose, and potentially escalate tumor dose to deep-seated bulky tumors.
MATERIALS/METHODS: Thirteen patients (multiple sites) who underwent conventional single-field cerrobend GRID-block therapy (maximum, 15 Gy in 1 fraction) were re-planned using an MLC-based 3D-crossfire method. Gross tumor volume (GTV) was used to generate a lattice pattern of 10 mm diameter and 20 mm center-to-center mimicking conventional GRID-block using an in-house MATLAB program. For the same prescription, MLC-based 3D-crossfire grid plans were generated using 6-gantry positions (clockwise) at 60° spacing (210°, 270°, 330°, 30°, 90°, 150°, therefore, each gantry angle associated with a complement angle at 180° apart) with differentially-weighted 6 or 18 MV beams in Eclipse. For each gantry, standard Millenium120 (Varian) 5 mm MLC leaves were fit to the grid-pattern with 90° collimator rotation, so that the tunneling dose distribution was achieved. Acuros-based dose was calculated for heterogeneity corrections. Dosimetric parameters evaluated include: mean GTV dose, GTV dose heterogeneities (peak-to-valley dose ratio, PVDR), skin dose and dose to other adjacent critical structures. Additionally, planning time and delivery efficiency was recorded. With 3D-MLC, dose escalation up to 23 Gy was simulated for all patient's plans.
All 3D-MLC crossfire GRID plans exhibited excellent target coverage with mean GTV dose of 13.4 ± 0.5 Gy (range: 12.43-14.24 Gy) and mean PVDR of 2.0 ± 0.3 (range: 1.7-2.4). Maximal and dose to 5 cc of skin were 9.7 ± 2.7 Gy (range: 5.4-14.0 Gy) and 6.3 ± 1.8 Gy (range: 4.1-11.1 Gy), on average respectively. Three-dimensional-MLC treatment planning time was about an hour or less. Compared to traditional GRID-block, average beam on time was 20% less, while providing similar overall treatment time. With 3D-MLC plans, tumor dose can be escalated up to 23 Gy while respecting skin dose tolerances.
The simple MLC-based 3D-crossfire GRID-therapy technique resulted in enhanced target coverage for de-bulking deep-seated bulky tumors, reduced skin toxicity and spare adjacent critical structures. This simple MLC-based approach can be easily adopted by any radiotherapy center. It provides detailed dosimetry and a safe and effective treatment by eliminating the heavy physical GRID-block and could potentially provide same day treatment. Prospective clinical trial with higher tumor-dose to bulky deep-seated tumors is anticipated.
用传统的单野 Cerrobend 栅形挡块治疗深部大肿块肿瘤有许多限制,例如靶区覆盖不足和皮肤毒性过大。重型传统栅形挡块在各种机架角度下对患者安全存在隐患,而且如果用户的治疗计划系统中没有栅格模板,则无法获得剂量学细节。在此,我们提出了一种简单但临床上有用的多叶准直器(MLC)为基础的三维(3D)交叉火力技术,以提供足够的靶区覆盖,降低皮肤剂量,并有可能将深部大肿块肿瘤的肿瘤剂量升高。
材料/方法:13 名患者(多个部位)接受了传统的单野 Cerrobend 栅形挡块治疗(最大剂量为 15 Gy/1 次分割),并用 MLC 为基础的 3D 交叉火力方法重新进行了计划。使用内部 MATLAB 程序,根据大体肿瘤体积(GTV)生成了一个直径为 10 毫米、中心到中心间隔为 20 毫米的网格图案,模拟传统的栅形挡块。对于相同的处方,使用 Eclipse 中的 6 个机架位置(顺时针)以 60°的间隔(210°、270°、330°、30°、90°、150°,因此,每个机架角度与相隔 180°的互补角度相关联)生成 MLC 为基础的 3D 交叉火力网格计划,并使用不同权重的 6 或 18 MV 射线在 Millennium120(Varian)上进行治疗。对于每个机架,将标准的 Millenium120(Varian)5 毫米 MLC 叶片与 90°准直器旋转相匹配,以实现隧道剂量分布。使用 Acuros 进行剂量计算以进行不均匀性校正。评估的剂量学参数包括:平均 GTV 剂量、GTV 剂量不均匀性(峰谷剂量比,PVDR)、皮肤剂量和对其他相邻关键结构的剂量。此外,还记录了计划时间和治疗效率。对于所有患者的计划,使用 3D-MLC 模拟了高达 23 Gy 的剂量递增。
所有 3D-MLC 交叉火力栅形挡块计划均表现出出色的靶区覆盖,平均 GTV 剂量为 13.4±0.5 Gy(范围:12.43-14.24 Gy),平均 PVDR 为 2.0±0.3(范围:1.7-2.4)。最大和 5cc 皮肤剂量分别为 9.7±2.7 Gy(范围:5.4-14.0 Gy)和 6.3±1.8 Gy(范围:4.1-11.1 Gy)。3D-MLC 治疗计划时间约为一小时或更短。与传统栅形挡块相比,平均照射时间减少了 20%,同时整体治疗时间相似。使用 3D-MLC 计划,在不超过皮肤耐受剂量的情况下,肿瘤剂量可以增加到 23 Gy。
基于简单的 MLC 的 3D 交叉火力栅形挡块治疗技术可增强深部大肿块肿瘤的靶区覆盖,降低皮肤毒性,保护相邻的关键结构。这种简单的 MLC 方法可以很容易地被任何放疗中心采用。它通过消除重型物理栅形挡块提供了详细的剂量学信息和安全有效的治疗,并可以潜在地提供当天的治疗。预计将对深部大肿块肿瘤进行更高肿瘤剂量的前瞻性临床试验。