Institute of Physiology II, University of Münster, Münster, Germany.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Am J Pathol. 2020 Apr;190(4):732-741. doi: 10.1016/j.ajpath.2019.07.021. Epub 2020 Feb 7.
The negatively charged, brush-like glycocalyx covers the surface layer of endothelial cells. This layer of membrane-bound, carbohydrate-rich molecules covers the luminal surface of the endothelium along the entire vascular tree, mostly comprising glycoproteins and proteoglycans. Together with the underlying actin-rich endothelial cortex, 50 to 150 nm beneath the plasma membrane, the endothelial glycocalyx (eGC) is recognized as a vasoprotective nanobarrier and responsive hub. Importantly, both the eGC and cortex are highly dynamic and can adapt their nanomechanical properties (ie, stiffness and height) to changes in the environment. The constant change between a soft and a stiff endothelial surface is imperative for proper functioning of the endothelium. This review defines the nanomechanical properties of the eGC and stresses the underlying mechanisms and factors leading to a disturbed structure-function relationship. Specifically, under inflammatory conditions, the eGC is damaged, resulting in enhanced vascular permeability, tissue edema, augmented leukocyte adhesion, platelet aggregation, and dysregulated vasodilation. An integrated knowledge of the relationship between the nanomechanical properties, structure, and function of the eGC might be key in understanding vascular function and dysfunction. In this context, the clinical aspects for preservation and restoration of proper eGC nanomechanics are discussed, considering the eGC as a potentially promising diagnostic marker and therapeutic target in the near future.
带负电荷的刷状糖萼覆盖在内皮细胞的表面层。这层膜结合的、富含碳水化合物的分子覆盖在内皮的腔面,沿着整个脉管树,主要由糖蛋白和蛋白聚糖组成。与下面富含肌动蛋白的内皮皮质一起,在细胞膜下 50 到 150nm 处,内皮糖萼(eGC)被认为是一种血管保护的纳米屏障和反应中心。重要的是,eGC 和皮质都是高度动态的,可以根据环境的变化来调整它们的纳米力学特性(即硬度和高度)。内皮表面的柔软和坚硬之间的不断变化对于内皮的正常功能是至关重要的。这篇综述定义了 eGC 的纳米力学特性,并强调了导致结构-功能关系紊乱的潜在机制和因素。具体来说,在炎症条件下,eGC 受损,导致血管通透性增加、组织水肿、白细胞黏附增强、血小板聚集和血管舒张失调。对 eGC 的纳米力学特性、结构和功能之间关系的综合了解可能是理解血管功能和功能障碍的关键。在这方面,考虑到 eGC 作为一种有希望的潜在诊断标志物和治疗靶点,讨论了保存和恢复适当的 eGC 纳米力学特性的临床方面。