Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital, Muenster, Muenster, Germany.
PLoS One. 2013 Nov 20;8(11):e80905. doi: 10.1371/journal.pone.0080905. eCollection 2013.
The endothelial glycocalyx (eGC), a carbohydrate-rich layer lining the luminal side of the endothelium, regulates vascular adhesiveness and permeability. Although central to the pathophysiology of vascular barrier dysfunction in sepsis, glycocalyx damage has been generally understudied, in part because of the aberrancy of in vitro preparations and its degradation during tissue handling. The aim of this study was to analyze inflammation-induced damage of the eGC on living endothelial cells by atomic-force microscopy (AFM) nanoindentation technique. AFM revealed the existence of a mature eGC on the luminal endothelial surface of freshly isolated rodent aorta preparations ex vivo, as well as on cultured human pulmonary microvascular endothelial cells (HPMEC) in vitro. AFM detected a marked reduction in glycocalyx thickness (266 ± 12 vs. 137 ± 17 nm, P<0.0001) and stiffness (0.34 ± 0.03 vs. 0.21 ± 0.01 pN/mn, P<0.0001) in septic mice (1 mg E. coli lipopolysaccharides (LPS)/kg BW i.p.) compared to controls. Corresponding in vitro experiments revealed that sepsis-associated mediators, such as thrombin, LPS or Tumor Necrosis Factor-α alone were sufficient to rapidly decrease eGC thickness (-50%, all P<0.0001) and stiffness (-20% P<0.0001) on HPMEC. In summary, AFM nanoindentation is a promising novel approach to uncover mechanisms involved in deterioration and refurbishment of the eGC in sepsis.
内皮糖萼(eGC)是一种富含碳水化合物的层,位于内皮的腔侧,调节血管黏附性和通透性。尽管它是脓毒症血管屏障功能障碍病理生理学的核心,但糖萼损伤通常研究不足,部分原因是体外制剂的异常和组织处理过程中的降解。本研究旨在通过原子力显微镜(AFM)纳米压痕技术分析炎症诱导的内皮糖萼损伤。AFM 揭示了在新鲜分离的啮齿动物主动脉体外标本的腔内皮表面以及在体外培养的人肺微血管内皮细胞(HPMEC)上存在成熟的 eGC。AFM 检测到脓毒症小鼠(1mg 大肠杆菌脂多糖(LPS)/kg BW i.p.)的糖萼厚度(266±12 纳米比 137±17 纳米,P<0.0001)和刚度(0.34±0.03 帕/纳米比 0.21±0.01 帕/纳米,P<0.0001)明显降低,与对照组相比。相应的体外实验表明,脓毒症相关介质,如凝血酶、LPS 或肿瘤坏死因子-α 单独作用足以迅速降低 HPMEC 上的 eGC 厚度(-50%,均 P<0.0001)和刚度(-20%,P<0.0001)。总之,AFM 纳米压痕是一种有前途的新方法,可以揭示脓毒症中 eGC 恶化和修复的相关机制。