Suppr超能文献

人类着丝粒的基因组和功能变异。

Genomic and functional variation of human centromeres.

机构信息

Department of Molecular Genetics and Microbiology, USA.

Department of Molecular Genetics and Microbiology, USA; Division of Human Genetics, Duke University School of Medicine, Durham, NC, 27710, USA.

出版信息

Exp Cell Res. 2020 Apr 15;389(2):111896. doi: 10.1016/j.yexcr.2020.111896. Epub 2020 Feb 6.

Abstract

Centromeres are central to chromosome segregation and genome stability, and thus their molecular foundations are important for understanding their function and the ways in which they go awry. Human centromeres typically form at large megabase-sized arrays of alpha satellite DNA for which there is little genomic understanding due to its repetitive nature. Consequently, it has been difficult to achieve genome assemblies at centromeres using traditional next generation sequencing approaches, so that centromeres represent gaps in the current human genome assembly. The role of alpha satellite DNA has been debated since centromeres can form, albeit rarely, on non-alpha satellite DNA. Conversely, the simple presence of alpha satellite DNA is not sufficient for centromere function since chromosomes with multiple alpha satellite arrays only exhibit a single location of centromere assembly. Here, we discuss the organization of human centromeres as well as genomic and functional variation in human centromere location, and current understanding of the genomic and epigenetic mechanisms that underlie centromere flexibility in humans.

摘要

着丝粒对于染色体分离和基因组稳定性至关重要,因此了解其分子基础对于理解其功能以及它们出错的方式非常重要。人类着丝粒通常在大型兆碱基大小的α卫星 DNA 阵列上形成,由于其重复性质,对其基因组了解甚少。因此,使用传统的下一代测序方法很难在着丝粒处实现基因组组装,因此着丝粒代表当前人类基因组组装中的缺口。自从着丝粒可以在非α卫星 DNA 上形成以来,α卫星 DNA 的作用一直存在争议。相反,由于具有多个α卫星阵列的染色体仅表现出一个着丝粒组装位置,因此α卫星 DNA 的简单存在不足以发挥着丝粒功能。在这里,我们讨论了人类着丝粒的组织以及人类着丝粒位置的基因组和功能变异,以及当前对人类着丝粒灵活性的基因组和表观遗传机制的理解。

相似文献

1
Genomic and functional variation of human centromeres.
Exp Cell Res. 2020 Apr 15;389(2):111896. doi: 10.1016/j.yexcr.2020.111896. Epub 2020 Feb 6.
2
α satellite DNA variation and function of the human centromere.
Nucleus. 2017 Jul 4;8(4):331-339. doi: 10.1080/19491034.2017.1308989. Epub 2017 Apr 13.
3
Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles.
Genome Res. 2016 Oct;26(10):1301-1311. doi: 10.1101/gr.206706.116. Epub 2016 Aug 10.
4
Centromere chromatin structure - Lessons from neocentromeres.
Exp Cell Res. 2020 Apr 15;389(2):111899. doi: 10.1016/j.yexcr.2020.111899. Epub 2020 Feb 8.
5
Birth, evolution, and transmission of satellite-free mammalian centromeric domains.
Genome Res. 2018 Jun;28(6):789-799. doi: 10.1101/gr.231159.117. Epub 2018 Apr 30.
6
Alpha satellite DNA biology: finding function in the recesses of the genome.
Chromosome Res. 2018 Sep;26(3):115-138. doi: 10.1007/s10577-018-9582-3. Epub 2018 Jul 5.
7
What makes a centromere?
Exp Cell Res. 2020 Apr 15;389(2):111895. doi: 10.1016/j.yexcr.2020.111895. Epub 2020 Feb 6.
8
Structural and functional dynamics of human centromeric chromatin.
Annu Rev Genomics Hum Genet. 2006;7:301-13. doi: 10.1146/annurev.genom.7.080505.115613.
9
Dynamic interplay between human alpha-satellite DNA structure and centromere functions.
Semin Cell Dev Biol. 2024 Mar 15;156:130-140. doi: 10.1016/j.semcdb.2023.10.002. Epub 2023 Nov 4.
10
Intergenic locations of rice centromeric chromatin.
PLoS Biol. 2008 Nov 25;6(11):e286. doi: 10.1371/journal.pbio.0060286.

引用本文的文献

1
Large tandem repeats of grass frog (Rana temporaria) in silico and in situ.
BMC Genomics. 2025 May 6;26(1):445. doi: 10.1186/s12864-025-11643-5.
2
Simulation and Quantitative Analysis of Spatial Centromere Distribution Patterns.
Cells. 2025 Mar 25;14(7):491. doi: 10.3390/cells14070491.
3
Post-polyploidization centromere evolution in cotton.
Nat Genet. 2025 Apr;57(4):1021-1030. doi: 10.1038/s41588-025-02115-3. Epub 2025 Mar 3.
4
Centromeres are stress-induced fragile sites.
Curr Biol. 2025 Mar 24;35(6):1197-1210.e4. doi: 10.1016/j.cub.2025.01.055. Epub 2025 Feb 18.
5
Simulation and quantitative analysis of spatial centromere distribution patterns.
bioRxiv. 2025 Jan 24:2025.01.22.634320. doi: 10.1101/2025.01.22.634320.
6
Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis.
Med Oncol. 2024 Oct 1;41(11):254. doi: 10.1007/s12032-024-02524-0.
7
Constructing telomere-to-telomere diploid genome by polishing haploid nanopore-based assembly.
Nat Methods. 2024 Apr;21(4):574-583. doi: 10.1038/s41592-023-02141-1. Epub 2024 Mar 8.
9
Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes.
Biomolecules. 2023 Jun 20;13(6):1016. doi: 10.3390/biom13061016.
10
KaryoCreate: A CRISPR-based technology to study chromosome-specific aneuploidy by targeting human centromeres.
Cell. 2023 Apr 27;186(9):1985-2001.e19. doi: 10.1016/j.cell.2023.03.029. Epub 2023 Apr 18.

本文引用的文献

1
Telomere-to-telomere assembly of a complete human X chromosome.
Nature. 2020 Sep;585(7823):79-84. doi: 10.1038/s41586-020-2547-7. Epub 2020 Jul 14.
2
Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features.
EMBO J. 2020 Jan 15;39(2):e102924. doi: 10.15252/embj.2019102924. Epub 2019 Nov 21.
3
Keeping the Centromere under Control: A Promising Role for DNA Methylation.
Cells. 2019 Aug 16;8(8):912. doi: 10.3390/cells8080912.
5
Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population.
Genes (Basel). 2019 May 8;10(5):352. doi: 10.3390/genes10050352.
6
Alpha satellite DNA biology: finding function in the recesses of the genome.
Chromosome Res. 2018 Sep;26(3):115-138. doi: 10.1007/s10577-018-9582-3. Epub 2018 Jul 5.
7
Non-random Mis-segregation of Human Chromosomes.
Cell Rep. 2018 Jun 12;23(11):3366-3380. doi: 10.1016/j.celrep.2018.05.047.
8
A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.
Science. 2018 Jan 5;359(6371):108-114. doi: 10.1126/science.aan6490. Epub 2017 Nov 23.
9
Rapid molecular assays to study human centromere genomics.
Genome Res. 2017 Dec;27(12):2040-2049. doi: 10.1101/gr.219709.116. Epub 2017 Nov 15.
10
DNA Sequences in Centromere Formation and Function.
Prog Mol Subcell Biol. 2017;56:305-336. doi: 10.1007/978-3-319-58592-5_13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验