Suppr超能文献

着丝粒由什么构成?

What makes a centromere?

机构信息

Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.

Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.

出版信息

Exp Cell Res. 2020 Apr 15;389(2):111895. doi: 10.1016/j.yexcr.2020.111895. Epub 2020 Feb 6.

Abstract

Centromeres are the eukaryotic chromosomal sites at which the kinetochore forms and attaches to spindle microtubules to orchestrate chromosomal segregation in mitosis and meiosis. Although centromeres are essential for cell division, their sequences are not conserved and evolve rapidly. Centromeres vary dramatically in size and organization. Here we categorize their diversity and explore the evolutionary forces shaping them. Nearly all centromeres favor AT-rich DNA that is gene-free and transcribed at a very low level. Repair of frequent centromere-proximal breaks probably contributes to their rapid sequence evolution. Point centromeres are only ~125 bp and are specified by common protein-binding motifs, whereas short regional centromeres are 1-5 kb, typically have unique sequences, and may have pericentromeric repeats adapted to facilitate centromere clustering. Transposon-rich centromeres are often ~100-300 kb and are favored by RNAi machinery that silences transposons, by suppression of meiotic crossovers at centromeres, and by the ability of some transposons to target centromeres. Megabase-length satellite centromeres arise in plants and animals with asymmetric female meiosis that creates centromere competition, and favors satellite monomers one or two nucleosomes in length that position and stabilize centromeric nucleosomes. Holocentromeres encompass the length of a chromosome and may differ dramatically between mitosis and meiosis. We propose a model in which low level transcription of centromeres facilitates the formation of non-B DNA that specifies centromeres and promotes loading of centromeric nucleosomes.

摘要

着丝粒是真核生物染色体上的位点,动粒在此形成并附着于纺锤体微管,以协调有丝分裂和减数分裂中的染色体分离。尽管着丝粒对于细胞分裂是必需的,但它们的序列并不保守,而且进化迅速。着丝粒在大小和组织上差异很大。在这里,我们对它们的多样性进行分类,并探讨塑造它们的进化力量。几乎所有的着丝粒都偏爱富含 AT 的 DNA,这些 DNA 是无基因的,转录水平非常低。频繁的着丝粒附近断裂的修复可能有助于它们的快速序列进化。点状着丝粒只有约 125bp,由常见的蛋白结合基序来指定,而短的区域着丝粒长 1-5kb,通常具有独特的序列,并且可能具有着丝粒聚集的着丝粒周围重复序列。富含转座子的着丝粒通常约 100-300kb,受到 RNAi 机制的青睐,该机制沉默转座子,抑制着丝粒处的减数分裂交叉,以及一些转座子能够靶向着丝粒。长卫星着丝粒在植物和动物中产生,这些植物和动物的雌性减数分裂不对称,从而产生着丝粒竞争,并有利于长度为一个或两个核小体的卫星单体,这些单体定位并稳定着丝粒核小体。全着丝粒包含染色体的长度,在有丝分裂和减数分裂之间可能有很大差异。我们提出了一个模型,即着丝粒的低水平转录有助于形成指定着丝粒的非 B DNA,并促进着丝粒核小体的加载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验