Suppr超能文献

利用逆有限元分析来识别原位脊柱组织行为。

Using inverse finite element analysis to identify spinal tissue behaviour in situ.

机构信息

Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK.

出版信息

Methods. 2021 Jan;185:105-109. doi: 10.1016/j.ymeth.2020.02.004. Epub 2020 Feb 6.

Abstract

In computational modelling of musculoskeletal applications, one of the critical aspects is ensuring that a model can capture intrinsic population variability and not only representative of a "mean" individual. Developing and calibrating models with this aspect in mind is key for the credibility of a modelling methodology. This often requires calibration of complex models with respect to 3D experiments and measurements on a range of specimens or patients. Most Finite Element (FE) software's do not have such a capacity embedded in their core tools. This paper presents a versatile interface between Finite Element (FE) software and optimisation tools, enabling calibration of a group of FE models on a range of experimental data. It is provided as a Python toolbox which has been fully tested and verified on Windows platforms. The toolbox is tested in three case studies involving in vitro testing of spinal tissues.

摘要

在肌肉骨骼应用的计算建模中,至关重要的一个方面是确保模型能够捕捉内在的群体变异性,而不仅仅是代表“平均”个体。考虑到这一方面来开发和校准模型是建模方法可信度的关键。这通常需要根据 3D 实验和一系列标本或患者的测量结果来校准复杂的模型。大多数有限元 (FE) 软件的核心工具都不具备这种功能。本文提出了一种在有限元 (FE) 软件和优化工具之间的通用接口,能够根据一系列实验数据对一组 FE 模型进行校准。它作为一个 Python 工具箱提供,已经在 Windows 平台上进行了全面测试和验证。该工具箱在三个案例研究中进行了测试,涉及脊柱组织的体外测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd64/7884930/e8ec4f6dce29/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验