Kelly Emily S, Javadi Akbar A, Holsgrove Timothy P, Ward Michael, Williams David, Williams Jenny, Holt Cathy, Meakin Judith R
University of Exeter, Exeter, UK.
Cardiff University, Cardiff, UK.
Int J Numer Method Biomed Eng. 2025 Jun;41(6):e70052. doi: 10.1002/cnm.70052.
Subject-specific finite element models could improve understanding of how spinal loading varies between people, based on differences in morphology and tissue properties. However, determining accurate subject-specific intervertebral disc (IVD) properties can be difficult due to the spine's complex behaviour, in six degrees of freedom. Previous studies optimising IVD properties have utilised axial compression alone or range of motion data in three axes. This study aimed to optimise IVD properties using 6-axis force-moment data, and compare the resultant model's accuracy against a model optimised using IVD pressure data. Additionally, model vertebral alignment was assessed to determine if differences between imaged specimen alignment and in vitro 6-axis test alignment affected the optimisation process. A finite element model of a porcine lumbar motion segment was developed, with generic IVD properties. The model loading and boundary conditions replicated in vitro 6-axis stiffness matrix testing of the same specimen. The model was then optimised twice, once using experimental IVD pressures and once using forces and moments. A second model with geometry based on the specimen's vertebral alignment from the 6-axis testing was also developed and optimised. The 6-axis force-moment optimised model had more accurate overall 6-axis load-displacement behaviour, but less accurate IVD pressures than the pressure optimised model. Neither optimised model fully captured spinal behaviours, due to model and optimisation process limitations. The 6-axis vertebral alignment model had lower error and different optimised IVD properties than the imaged vertebral alignment model. Thus, vertebral alignment affected segment stiffness, so should be considered when developing spine models.
基于形态学和组织特性的差异,特定个体的有限元模型有助于更好地理解不同人之间脊柱负荷的变化情况。然而,由于脊柱在六个自由度上的复杂行为,确定准确的特定个体椎间盘(IVD)特性可能具有挑战性。以往优化IVD特性的研究仅使用了轴向压缩或三个轴向上的运动范围数据。本研究旨在使用六轴力-矩数据优化IVD特性,并将所得模型的准确性与使用IVD压力数据优化的模型进行比较。此外,对模型的椎体排列进行了评估,以确定成像标本排列与体外六轴测试排列之间的差异是否会影响优化过程。建立了一个具有通用IVD特性的猪腰椎运动节段有限元模型。该模型的加载和边界条件复制了同一标本的体外六轴刚度矩阵测试。然后对该模型进行了两次优化,一次使用实验性IVD压力,一次使用力和力矩。还开发并优化了第二个模型,其几何形状基于六轴测试中标本的椎体排列。与压力优化模型相比,六轴力-矩优化模型的整体六轴载荷-位移行为更准确,但IVD压力的准确性较低。由于模型和优化过程的局限性,两个优化模型均未完全捕捉到脊柱行为。与成像椎体排列模型相比,六轴椎体排列模型的误差更低,优化后的IVD特性也有所不同。因此,椎体排列会影响节段刚度,在开发脊柱模型时应予以考虑。
Int J Numer Method Biomed Eng. 2025-6
J Mech Behav Biomed Mater. 2017-1
BMC Musculoskelet Disord. 2010-7-5
Spine (Phila Pa 1976). 2000-10-1
J Mech Behav Biomed Mater. 2021-10
Front Bioeng Biotechnol. 2024-6-5
Comput Methods Biomech Biomed Engin. 2023
Front Physiol. 2022-1-13
J Funct Biomater. 2021-7-31
Int J Numer Method Biomed Eng. 2021-10
Comput Methods Biomech Biomed Engin. 2021-4