文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

特定个体有限元模型中椎间盘力学性能的优化及椎体排列的影响

Optimisation of Intervertebral Disc Mechanical Properties and the Impact of Vertebral Alignment in Subject-Specific Finite Element Models.

作者信息

Kelly Emily S, Javadi Akbar A, Holsgrove Timothy P, Ward Michael, Williams David, Williams Jenny, Holt Cathy, Meakin Judith R

机构信息

University of Exeter, Exeter, UK.

Cardiff University, Cardiff, UK.

出版信息

Int J Numer Method Biomed Eng. 2025 Jun;41(6):e70052. doi: 10.1002/cnm.70052.


DOI:10.1002/cnm.70052
PMID:40454657
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12128571/
Abstract

Subject-specific finite element models could improve understanding of how spinal loading varies between people, based on differences in morphology and tissue properties. However, determining accurate subject-specific intervertebral disc (IVD) properties can be difficult due to the spine's complex behaviour, in six degrees of freedom. Previous studies optimising IVD properties have utilised axial compression alone or range of motion data in three axes. This study aimed to optimise IVD properties using 6-axis force-moment data, and compare the resultant model's accuracy against a model optimised using IVD pressure data. Additionally, model vertebral alignment was assessed to determine if differences between imaged specimen alignment and in vitro 6-axis test alignment affected the optimisation process. A finite element model of a porcine lumbar motion segment was developed, with generic IVD properties. The model loading and boundary conditions replicated in vitro 6-axis stiffness matrix testing of the same specimen. The model was then optimised twice, once using experimental IVD pressures and once using forces and moments. A second model with geometry based on the specimen's vertebral alignment from the 6-axis testing was also developed and optimised. The 6-axis force-moment optimised model had more accurate overall 6-axis load-displacement behaviour, but less accurate IVD pressures than the pressure optimised model. Neither optimised model fully captured spinal behaviours, due to model and optimisation process limitations. The 6-axis vertebral alignment model had lower error and different optimised IVD properties than the imaged vertebral alignment model. Thus, vertebral alignment affected segment stiffness, so should be considered when developing spine models.

摘要

基于形态学和组织特性的差异,特定个体的有限元模型有助于更好地理解不同人之间脊柱负荷的变化情况。然而,由于脊柱在六个自由度上的复杂行为,确定准确的特定个体椎间盘(IVD)特性可能具有挑战性。以往优化IVD特性的研究仅使用了轴向压缩或三个轴向上的运动范围数据。本研究旨在使用六轴力-矩数据优化IVD特性,并将所得模型的准确性与使用IVD压力数据优化的模型进行比较。此外,对模型的椎体排列进行了评估,以确定成像标本排列与体外六轴测试排列之间的差异是否会影响优化过程。建立了一个具有通用IVD特性的猪腰椎运动节段有限元模型。该模型的加载和边界条件复制了同一标本的体外六轴刚度矩阵测试。然后对该模型进行了两次优化,一次使用实验性IVD压力,一次使用力和力矩。还开发并优化了第二个模型,其几何形状基于六轴测试中标本的椎体排列。与压力优化模型相比,六轴力-矩优化模型的整体六轴载荷-位移行为更准确,但IVD压力的准确性较低。由于模型和优化过程的局限性,两个优化模型均未完全捕捉到脊柱行为。与成像椎体排列模型相比,六轴椎体排列模型的误差更低,优化后的IVD特性也有所不同。因此,椎体排列会影响节段刚度,在开发脊柱模型时应予以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/3dc8038ea60a/CNM-41-e70052-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/0d886fd5c6c6/CNM-41-e70052-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/45d8ed8d1ef1/CNM-41-e70052-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/e058666103ff/CNM-41-e70052-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/1a13da7b40c4/CNM-41-e70052-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/b3f99e791ae5/CNM-41-e70052-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/caaa6067840f/CNM-41-e70052-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/3dc8038ea60a/CNM-41-e70052-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/0d886fd5c6c6/CNM-41-e70052-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/45d8ed8d1ef1/CNM-41-e70052-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/e058666103ff/CNM-41-e70052-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/1a13da7b40c4/CNM-41-e70052-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/b3f99e791ae5/CNM-41-e70052-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/caaa6067840f/CNM-41-e70052-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12128571/3dc8038ea60a/CNM-41-e70052-g006.jpg

相似文献

[1]
Optimisation of Intervertebral Disc Mechanical Properties and the Impact of Vertebral Alignment in Subject-Specific Finite Element Models.

Int J Numer Method Biomed Eng. 2025-6

[2]
Material properties of bovine intervertebral discs across strain rates.

J Mech Behav Biomed Mater. 2017-1

[3]
Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.

J Biomech. 2014-4-16

[4]
Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure--a finite element study.

BMC Musculoskelet Disord. 2010-7-5

[5]
Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

J Biomech Eng. 2014-6

[6]
Impact response of the intervertebral disc in a finite-element model.

Spine (Phila Pa 1976). 2000-10-1

[7]
Analytical and finite element analysis of shape memory polymer for use in lumbar total disc replacement.

J Mech Behav Biomed Mater. 2021-10

[8]
The biomechanical influence of anterior vertebral body osteophytes on the lumbar spine: A finite element study.

Spine J. 2018-7-7

[9]
Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.

Proc Inst Mech Eng H. 2002

[10]
Assessment of intervertebral disc degeneration-related properties using finite element models based on [Formula: see text]-weighted MRI data.

Biomech Model Mechanobiol. 2018-8-3

本文引用的文献

[1]
Finite element models of intervertebral disc: recent advances and prospects.

Ann Med. 2025-12

[2]
Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars.

Front Bioeng Biotechnol. 2024-6-5

[3]
Replicating spine loading during functional and daily activities: An in vivo, in silico, in vitro research pipeline.

J Biomech. 2024-1

[4]
The physiological, in-vitro simulation of daily activities in the intervertebral disc using a load Informed kinematic evaluation (LIKE) protocol.

J Biomech. 2024-1

[5]
Development and validation of lumbar spine finite element model.

PeerJ. 2023

[6]
Biomechanical response of lumbar intervertebral disc in daily sitting postures: a poroelastic finite element analysis.

Comput Methods Biomech Biomed Engin. 2023

[7]
Computational Modeling Intervertebral Disc Pathophysiology: A Review.

Front Physiol. 2022-1-13

[8]
Finite Element Method for the Evaluation of the Human Spine: A Literature Overview.

J Funct Biomater. 2021-7-31

[9]
Computational modelling of the scoliotic spine: A literature review.

Int J Numer Method Biomed Eng. 2021-10

[10]
Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.

Comput Methods Biomech Biomed Engin. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索