Suppr超能文献

基于 RNA 模型的免疫分析性能评估。

Analytical Performance of an Immunoprofiling Assay Based on RNA Models.

机构信息

Cofactor Genomics, Inc., San Francisco, California.

Cofactor Genomics, Inc., San Francisco, California.

出版信息

J Mol Diagn. 2020 Apr;22(4):555-570. doi: 10.1016/j.jmoldx.2020.01.009. Epub 2020 Feb 7.

Abstract

As immuno-oncology drugs grow more popular in the treatment of cancer, better methods are needed to quantify the tumor immune cell component to determine which patients are most likely to benefit from treatment. Methods such as flow cytometry can accurately assess the composition of infiltrating immune cells; however, they show limited use in formalin-fixed, paraffin-embedded (FFPE) specimens. This article describes a novel hybrid-capture RNA sequencing assay, ImmunoPrism, that estimates the relative percentage abundance of eight immune cell types in FFPE solid tumors. Immune health expression models were generated using machine learning methods and used to uniquely identify each immune cell type using the most discriminatively expressed genes. The analytical performance of the assay was assessed using 101 libraries from 40 FFPE and 32 fresh-frozen samples. With defined samples, ImmunoPrism had a precision of ±2.72%, a total error of 2.75%, and a strong correlation (r = 0.81; P < 0.001) to flow cytometry. ImmunoPrism had similar performance in dissociated tumor cell samples (total error of 8.12%) and correlated strongly with immunohistochemistry (CD8: r = 0.83; P < 0.001) in FFPE samples. Other performance metrics were determined, including limit of detection, reportable range, and reproducibility. The approach used for analytical validation is shared here so that it may serve as a helpful framework for other laboratories when validating future complex RNA-based assays.

摘要

随着免疫肿瘤药物在癌症治疗中的应用越来越广泛,需要更好的方法来量化肿瘤免疫细胞成分,以确定哪些患者最有可能从治疗中受益。流式细胞术等方法可以准确评估浸润免疫细胞的组成;然而,它们在福尔马林固定、石蜡包埋(FFPE)标本中的应用有限。本文描述了一种新型的杂交捕获 RNA 测序检测方法 ImmunoPrism,它可以估计 FFPE 实体瘤中 8 种免疫细胞类型的相对百分比丰度。使用机器学习方法生成免疫健康表达模型,并使用最具区分性的表达基因来唯一识别每种免疫细胞类型。使用来自 40 个 FFPE 和 32 个新鲜冷冻样本的 101 个文库评估了该检测方法的分析性能。对于定义的样本,ImmunoPrism 的精度为 ±2.72%,总误差为 2.75%,与流式细胞术具有很强的相关性(r = 0.81;P < 0.001)。在分离的肿瘤细胞样本中,ImmunoPrism 具有相似的性能(总误差为 8.12%),与 FFPE 样本中的免疫组织化学(CD8:r = 0.83;P < 0.001)具有很强的相关性。还确定了其他性能指标,包括检测限、报告范围和重现性。这里共享了用于分析验证的方法,以便为其他实验室在验证未来复杂的基于 RNA 的检测方法时提供有用的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验