Suppr超能文献

多维生物标志物可预测复发性或转移性头颈部鳞状细胞癌免疫治疗的疾病控制情况。

Multidimensional biomarker predicts disease control in response to immunotherapy in recurrent or metastatic head and neck squamous-cell carcinoma.

作者信息

Flanagan Kevin C, Earls Jon, Schillebeeckx Ian, Hiken Jeffrey, Wellinghoff Rachel L, LaFranzo Natalie A, Bradley Zachary S, Babbitt Joey, Westra William H, Hsu Raymond, Nadauld Lincoln, Mcleod Howard, Firth Sean D, Sharp Brittany, Fuller Josh, Vavinskaya Vera, Sutton Leisa, Deichaite Ida, Bailey Samuel D, Sandulache Vlad C, Rendo Matthew J, Macdonald Orlan K, Welaya Karim, Wade James L, Pippas Andrew W, Slim Jennifer, Bank Bruce, Saccaro Steven J, Sui Xingwei, Akhtar Adil, Balaraman Savitha, Kossman Steven E, Sonnier Scott A, Shenkenberg Todd D, Alexander Warren L, Price Katherine A, Bane Charles L, Ley Jessica, Messina David N, Glasscock Jarret I, Cohen Ezra E W, Adkins Douglas R, Duncavage Eric J

机构信息

Cofactor Genomics, Inc., 4044 Clayton Ave, St. Louis, MO, 63110, USA.

Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(15):14125-14136. doi: 10.1007/s00432-023-05205-z. Epub 2023 Aug 8.

Abstract

PURPOSE

Anti-PD-1 therapy provides clinical benefit in 40-50% of patients with relapsed and/or metastatic head and neck squamous cell carcinoma (RM-HNSCC). Selection of anti- PD-1 therapy is typically based on patient PD-L1 immunohistochemistry (IHC) which has low specificity for predicting disease control. Therefore, there is a critical need for a clinical biomarker that will predict clinical benefit to anti-PD-1 treatment with high specificity.

METHODS

Clinical treatment and outcomes data for 103 RM-HNSCC patients were paired with RNA-sequencing data from formalin-fixed patient samples. Using logistic regression methods, we developed a novel biomarker classifier based on expression patterns in the tumor immune microenvironment to predict disease control with monotherapy PD-1 inhibitors (pembrolizumab and nivolumab). The performance of the biomarker was internally validated using out-of-bag methods.

RESULTS

The biomarker significantly predicted disease control (65% in predicted non-progressors vs. 17% in predicted progressors, p < 0.001) and was significantly correlated with overall survival (OS; p = 0.004). In addition, the biomarker outperformed PD-L1 IHC across numerous metrics including sensitivity (0.79 vs 0.64, respectively; p = 0.005) and specificity (0.70 vs 0.61, respectively; p = 0.009).

CONCLUSION

This novel assay uses tumor immune microenvironment expression data to predict disease control and OS with high sensitivity and specificity in patients with RM-HNSCC treated with anti-PD-1 monotherapy.

摘要

目的

抗程序性死亡蛋白1(PD-1)疗法可使40%-50%的复发和/或转移性头颈部鳞状细胞癌(RM-HNSCC)患者获得临床益处。抗PD-1疗法的选择通常基于患者的PD-L1免疫组化(IHC),但其对预测疾病控制的特异性较低。因此,迫切需要一种临床生物标志物,能够高度特异性地预测抗PD-1治疗的临床益处。

方法

103例RM-HNSCC患者的临床治疗和结局数据与来自福尔马林固定患者样本的RNA测序数据配对。使用逻辑回归方法,我们基于肿瘤免疫微环境中的表达模式开发了一种新型生物标志物分类器,以预测使用PD-1抑制剂(帕博利珠单抗和纳武利尤单抗)单药治疗的疾病控制情况。该生物标志物的性能通过袋外法进行内部验证。

结果

该生物标志物显著预测了疾病控制情况(预测无进展者为65%,预测进展者为17%,p<0.001),并与总生存期(OS;p=0.004)显著相关。此外,在包括敏感性(分别为0.79和0.64;p=0.005)和特异性(分别为0.70和0.61;p=0.009)在内的多个指标上,该生物标志物的表现均优于PD-L1 IHC。

结论

这种新型检测方法利用肿瘤免疫微环境表达数据,在接受抗PD-1单药治疗的RM-HNSCC患者中,以高敏感性和特异性预测疾病控制情况和OS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a0c/11797516/d28095a49c8a/432_2023_5205_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验