Suppr超能文献

基于磁共振成像的放射组学分析预测子宫内膜腺癌的肿瘤分级和淋巴血管间隙浸润

Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis.

作者信息

Bereby-Kahane M, Dautry R, Matzner-Lober E, Cornelis F, Sebbag-Sfez D, Place V, Mezzadri M, Soyer P, Dohan A

机构信息

Department of Radiology A, Hôpital Cochin, AP-HP, 75014 Paris, France.

CREST UMR 9194, ENSAE formation continue, 91120 Palaiseau, France.

出版信息

Diagn Interv Imaging. 2020 Jun;101(6):401-411. doi: 10.1016/j.diii.2020.01.003. Epub 2020 Feb 6.

Abstract

PURPOSE

To evaluate the capabilities of two-dimensional magnetic resonance imaging (MRI)-based texture analysis features, tumor volume, tumor short axis and apparent diffusion coefficient (ADC) in predicting histopathological high-grade and lymphovascular space invasion (LVSI) in endometrial adenocarcinoma.

MATERIALS AND METHODS

Seventy-three women (mean age: 66±11.5 [SD] years; range: 45-88 years) with endometrial adenocarcinoma who underwent MRI of the pelvis at 1.5-T before hysterectomy were retrospectively included. Texture analysis was performed using TexRAD® software on T2-weighted images and ADC maps. Primary outcomes were high-grade and LVSI prediction using histopathological analysis as standard of reference. After data reduction using ascending hierarchical classification analysis, a predictive model was obtained by stepwise multivariate logistic regression and performances were assessed using cross-validated receiver operator curve (ROC).

RESULTS

A total of 72 texture features per tumor were computed. Texture model yielded 52% sensitivity and 75% specificity for the diagnosis of high-grade tumor (areas under ROC curve [AUC]=0.64) and 71% sensitivity and 59% specificity for the diagnosis of LVSI (AUC=0.59). Volumes and tumor short axis were greater for high-grade tumors (P=0.0002 and P=0.004, respectively) and for patients with LVSI (P=0.004 and P=0.0279, respectively). No differences in ADC values were found between high-grade and low-grade tumors and for LVSI. A tumor short axis≥20mm yielded 95% sensitivity and 75% specificity for the diagnosis of high-grade tumor (AUC=0.86).

CONCLUSION

MRI-based texture analysis is of limited value to predict high grade and LVSI of endometrial adenocarcinoma. A tumor short axis≥20mm is the best predictor of high grade and LVSI.

摘要

目的

评估基于二维磁共振成像(MRI)的纹理分析特征、肿瘤体积、肿瘤短轴及表观扩散系数(ADC)在预测子宫内膜腺癌组织病理学高级别及淋巴管间隙浸润(LVSI)方面的能力。

材料与方法

回顾性纳入73例子宫内膜腺癌女性患者(平均年龄:66±11.5[标准差]岁;范围:45 - 88岁),这些患者在子宫切除术前接受了1.5-T的盆腔MRI检查。使用TexRAD®软件在T2加权图像和ADC图上进行纹理分析。主要结局是以组织病理学分析为参考标准预测高级别及LVSI。在使用升序分层分类分析进行数据简化后,通过逐步多变量逻辑回归获得预测模型,并使用交叉验证的受试者操作特征曲线(ROC)评估性能。

结果

每个肿瘤共计算出72个纹理特征。纹理模型对高级别肿瘤诊断的敏感性为52%,特异性为75%(ROC曲线下面积[AUC]=0.64),对LVSI诊断的敏感性为71%,特异性为59%(AUC=0.59)。高级别肿瘤及LVSI患者的肿瘤体积和肿瘤短轴更大(分别为P = 0.0002和P = 0.004;P = 0.004和P = 0.0279)。高级别与低级别肿瘤之间以及LVSI患者与非LVSI患者之间的ADC值无差异。肿瘤短轴≥20mm对高级别肿瘤诊断的敏感性为95%,特异性为75%(AUC=0.86)。

结论

基于MRI的纹理分析在预测子宫内膜腺癌的高级别及LVSI方面价值有限。肿瘤短轴≥20mm是高级别及LVSI的最佳预测指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验