Renton Mary, Fakhriyehasl Mina, Weiss Jessica, Milosevic Michael, Laframboise Stephane, Rouzbahman Marjan, Han Kathy, Jhaveri Kartik
The Joint Department of Medical Imaging, University Hospital Network, University of Toronto, Toronto, ON, Canada.
Department of Biostatistics, University Hospital Network, Toronto, ON, Canada.
Front Oncol. 2024 Aug 2;14:1406858. doi: 10.3389/fonc.2024.1406858. eCollection 2024.
Current preoperative imaging is insufficient to predict survival and tumor recurrence in endometrial cancer (EC), necessitating invasive procedures for risk stratification.
To establish a multiparametric MRI radiomics model for predicting disease-free survival (DFS) and high-risk histopathologic features in EC.
This retrospective study included 71 patients with histopathology-proven EC and preoperative MRI over a 10-year period. Clinicopathology data were extracted from health records. Manual MRI segmentation was performed on T2-weighted (T2W), apparent diffusion coefficient (ADC) maps and dynamic contrast-enhanced T1-weighted images (DCE T1WI). Radiomic feature (RF) extraction was performed with PyRadiomics. Associations between RF and histopathologic features were assessed using logistic regression. Associations between DFS and RF or clinicopathologic features were assessed using the Cox proportional hazards model. All RF with univariate analysis p-value < 0.2 were included in elastic net analysis to build radiomic signatures.
The 3-year DFS rate was 68% (95% CI = 57%-80%). There were no significant clinicopathologic predictors for DFS, whilst the radiomics signature was a strong predictor of DFS (p<0.001, HR 3.62, 95% CI 1.94, 6.75). From 107 RF extracted, significant predictive elastic net radiomic signatures were established for deep myometrial invasion (p=0.0097, OR 4.81, 95% CI 1.46, 15.79), hysterectomy grade (p=0.002, OR 5.12, 95% CI 1.82, 14.45), hysterectomy histology (p=0.0061, OR 18.25, 95% CI 2.29,145.24) and lymphovascular space invasion (p<0.001, OR 5.45, 95% CI 2.07, 14.36).
Multiparametric MRI radiomics has the potential to create a non-invasive approach to predicting DFS and high-risk histopathologic features in EC.
目前的术前影像学检查不足以预测子宫内膜癌(EC)的生存率和肿瘤复发情况,因此需要进行侵入性检查来进行风险分层。
建立一种多参数MRI放射组学模型,用于预测EC的无病生存期(DFS)和高危组织病理学特征。
这项回顾性研究纳入了71例经组织病理学证实为EC且在10年期间内进行了术前MRI检查的患者。临床病理数据从健康记录中提取。在T2加权(T2W)、表观扩散系数(ADC)图和动态对比增强T1加权图像(DCE T1WI)上进行手动MRI分割。使用PyRadiomics进行放射组学特征(RF)提取。使用逻辑回归评估RF与组织病理学特征之间的关联。使用Cox比例风险模型评估DFS与RF或临床病理特征之间的关联。单变量分析p值<0.2的所有RF都纳入弹性网络分析以构建放射组学特征。
3年DFS率为68%(95%CI = 57%-80%)。DFS没有显著的临床病理预测因素,而放射组学特征是DFS的有力预测因素(p<0.001,HR 3.62,95%CI 1.94,6.75)。从提取的107个RF中,建立了用于预测肌层深部浸润(p = 0.0097,OR 4.81,95%CI 1.46,15.79)、子宫切除分级(p = 0.002,OR 5.12,95%CI 1.82,14.45)、子宫切除组织学(p = 0.0061,OR 18.25,95%CI 2.29,145.24)和淋巴管间隙浸润(p<0.001,OR 5.45,95%CI 2.07,14.36)的显著预测弹性网络放射组学特征。
多参数MRI放射组学有可能创建一种非侵入性方法来预测EC的DFS和高危组织病理学特征。