Sarikaya Mehmet Ali, Ince Gökhan
Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey.
PeerJ Comput Sci. 2025 Jan 20;11:e2649. doi: 10.7717/peerj-cs.2649. eCollection 2025.
The use of brain-computer interface (BCI) technology to identify emotional states has gained significant interest, especially with the rise of virtual reality (VR) applications. However, the extensive calibration required for precise emotion recognition models presents a significant challenge, particularly for sensitive groups such as children, elderly, and patients. This study presents a novel approach that utilizes heterogeneous adversarial transfer learning (HATL) to synthesize electroencephalography (EEG) data from various other signal modalities, reducing the need for lengthy calibration phases. We benchmark the efficacy of three generative adversarial network (GAN) architectures, such as conditional GAN (CGAN), conditional Wasserstein GAN (CWGAN), and CWGAN with gradient penalty (CWGAN-GP) within this framework. The proposed framework is rigorously tested on two conventional open sourced datasets, SEED-V and DEAP. Additionally, the framework was applied to an immersive three-dimensional (3D) dataset named GraffitiVR, which we collected to capture the emotional and behavioral reactions of individuals experiencing urban graffiti in a VR environment. This expanded application provides insights into emotion recognition frameworks in VR settings, providing a wider range of contexts for assessing our methodology. When the accuracy of emotion recognition classifiers trained with CWGAN-GP-generated EEG data combined with non-EEG sensory data was compared against those trained using a combination of real EEG and non-EEG sensory data, the accuracy ratios were 93% on the SEED-V dataset, 99% on the DEAP dataset, and 97% on the GraffitiVR dataset. Moreover, in the GraffitiVR dataset, using CWGAN-GP-generated EEG data with non-EEG sensory data for emotion recognition models resulted in up to a 30% reduction in calibration time compared to classifiers trained on real EEG data with non-EEG sensory data. These results underscore the robustness and versatility of the proposed approach, significantly enhancing emotion recognition processes across a variety of environmental settings.
利用脑机接口(BCI)技术识别情绪状态已引起广泛关注,尤其是随着虚拟现实(VR)应用的兴起。然而,精确的情绪识别模型所需的大量校准带来了重大挑战,特别是对于儿童、老年人和患者等敏感群体。本研究提出了一种新颖的方法,利用异构对抗转移学习(HATL)从各种其他信号模态合成脑电图(EEG)数据,减少了冗长校准阶段的需求。我们在这个框架内对三种生成对抗网络(GAN)架构的有效性进行了基准测试,如条件GAN(CGAN)、条件Wasserstein GAN(CWGAN)和带有梯度惩罚的CWGAN(CWGAN-GP)。所提出的框架在两个传统的开源数据集SEED-V和DEAP上进行了严格测试。此外,该框架被应用于一个名为GraffitiVR的沉浸式三维(3D)数据集,我们收集该数据集是为了捕捉个体在VR环境中体验城市涂鸦时的情绪和行为反应。这种扩展应用为VR环境中的情绪识别框架提供了见解,为评估我们的方法提供了更广泛的背景。当将使用CWGAN-GP生成的EEG数据与非EEG感官数据训练的情绪识别分类器的准确率与使用真实EEG和非EEG感官数据组合训练的分类器的准确率进行比较时,SEED-V数据集上的准确率为93%,DEAP数据集上为99%,GraffitiVR数据集上为97%。此外,在GraffitiVR数据集中,与使用真实EEG数据和非EEG感官数据训练的分类器相比,使用CWGAN-GP生成的EEG数据和非EEG感官数据进行情绪识别模型的校准时间最多减少了30%。这些结果强调了所提出方法的稳健性和通用性,显著增强了各种环境设置下的情绪识别过程。