Gaytán Itzel, Sánchez-Reyes Ayixon, Burelo Manuel, Vargas-Suárez Martín, Liachko Ivan, Press Maximilian, Sullivan Shawn, Cruz-Gómez M Javier, Loza-Tavera Herminia
Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Front Microbiol. 2020 Jan 22;10:2986. doi: 10.3389/fmicb.2019.02986. eCollection 2019.
Polyurethanes (PU) are the sixth most produced plastics with around 18-million tons in 2016, but since they are not recyclable, they are burned or landfilled, generating damage to human health and ecosystems. To elucidate the mechanisms that landfill microbial communities perform to attack recalcitrant PU plastics, we studied the degradative activity of a mixed microbial culture, selected from a municipal landfill by its capability to grow in a water PU dispersion (WPUD) as the only carbon source, as a model for the BP8 landfill microbial community. The WPUD contains a polyether-polyurethane-acrylate (PE-PU-A) copolymer and xenobiotic additives (-methylpyrrolidone, isopropanol and glycol ethers). To identify the changes that the BP8 microbial community culture generates to the WPUD additives and copolymer, we performed chemical and physical analyses of the biodegradation process during 25 days of cultivation. These analyses included Nuclear magnetic resonance, Fourier transform infrared spectroscopy, Thermogravimetry, Differential scanning calorimetry, Gel permeation chromatography, and Gas chromatography coupled to mass spectrometry techniques. Moreover, for revealing the BP8 community structure and its genetically encoded potential biodegradative capability we also performed a proximity ligation-based metagenomic analysis. The additives present in the WPUD were consumed early whereas the copolymer was cleaved throughout the 25-days of incubation. The analysis of the biodegradation process and the identified biodegradation products showed that BP8 cleaves esters, C-C, and the recalcitrant aromatic urethanes and ether groups by hydrolytic and oxidative mechanisms, both in the soft and the hard segments of the copolymer. The proximity ligation-based metagenomic analysis allowed the reconstruction of five genomes, three of them from novel species. In the metagenome, genes encoding known enzymes, and putative enzymes and metabolic pathways accounting for the biodegradative activity of the BP8 community over the additives and PE-PU-A copolymer were identified. This is the first study revealing the genetically encoded potential biodegradative capability of a microbial community selected from a landfill, that thrives within a WPUD system and shows potential for bioremediation of polyurethane- and xenobiotic additives-contamitated sites.
聚氨酯(PU)是2016年产量第六高的塑料,年产量约为1800万吨,但由于它们不可回收利用,所以被焚烧或填埋,对人类健康和生态系统造成损害。为了阐明垃圾填埋场微生物群落分解难降解聚氨酯塑料的机制,我们研究了一种混合微生物培养物的降解活性,该培养物是从城市垃圾填埋场中筛选出来的,因其能够在水性聚氨酯分散体(WPUD)中作为唯一碳源生长,以此作为BP8垃圾填埋场微生物群落的模型。WPUD包含一种聚醚 - 聚氨酯 - 丙烯酸酯(PE - PU - A)共聚物和外源添加剂(N - 甲基吡咯烷酮、异丙醇和乙二醇醚)。为了确定BP8微生物群落培养物对WPUD添加剂和共聚物产生的变化,我们在培养25天期间对生物降解过程进行了化学和物理分析。这些分析包括核磁共振、傅里叶变换红外光谱、热重分析、差示扫描量热法、凝胶渗透色谱法以及气相色谱 - 质谱联用技术。此外,为了揭示BP8群落结构及其遗传编码的潜在生物降解能力,我们还进行了基于邻近连接的宏基因组分析。WPUD中存在的添加剂在早期就被消耗掉了,而共聚物在整个25天的培养过程中被裂解。对生物降解过程和鉴定出的生物降解产物的分析表明,BP8通过水解和氧化机制在共聚物的软段和硬段中裂解酯键、碳 - 碳键以及难降解的芳香族聚氨酯和醚键。基于邻近连接的宏基因组分析使得能够重建五个基因组,其中三个来自新物种。在宏基因组中,鉴定出了编码已知酶以及推测的酶和代谢途径的基因,这些基因解释了BP8群落对添加剂和PE - PU - A共聚物的生物降解活性。这是第一项揭示从垃圾填埋场中筛选出的微生物群落遗传编码的潜在生物降解能力的研究,该群落能在WPUD系统中茁壮成长,并显示出对聚氨酯和外源添加剂污染场地进行生物修复的潜力。