Álvarez-Barragán Joyce, Domínguez-Malfavón Lilianha, Vargas-Suárez Martín, González-Hernández Ricardo, Aguilar-Osorio Guillermo, Loza-Tavera Herminia
Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México.
Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, México City, México.
Appl Environ Microbiol. 2016 Aug 15;82(17):5225-35. doi: 10.1128/AEM.01344-16. Print 2016 Sep 1.
Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU.
Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and their biodegradative activity was studied by different experimental approaches. Varnish biodegradation analyses showed that fungi were able to break down the polymer in some of their precursors, offering the possibility that they may be recovered and used for new polyurethane synthesis. Also, the levels of degradation of solid polyether polyurethane foams reported in this work have never been observed previously. Isolation of efficient polyurethane-degrading microorganisms and delving into the mechanisms they used to degrade the polymer provide the basis for the development of biotechnological processes for polyurethane biodegradation and recycling.
聚氨酯(PU)因其多功能性和耐用性而广泛应用于现代生活的许多方面。然而,聚氨酯废物处理产生了大问题,因为它降解缓慢,回收过程有限,并且其销毁可能产生有毒化合物。在这项工作中,我们分离出了能够在以聚酯聚氨酯(PS-PU;依普朗DLN)或聚醚聚氨酯(PE-PU;保利拉克)清漆作为唯一碳源的矿物培养基中生长的真菌菌株。在八个最佳的依普朗降解菌株中,六个最佳降解菌属于枝孢菌复合体,包括假枝孢菌、细弱枝孢菌、粗糙枝孢菌和蒙特枝孢菌,另外两个被鉴定为烟曲霉和产黄青霉。最佳的依普朗降解菌,假枝孢菌菌株T1.PL.1,在培养14天后降解率高达87%。对该菌株降解依普朗的傅里叶变换红外(FTIR)光谱分析表明,羰基(1729 cm⁻¹)和N-H键(1540和1261 cm⁻¹)减少,气相色谱-质谱(GC-MS)分析表明酯类化合物减少,醇类和己烷二异氰酸酯增加,表明酯键和脲键发生了水解。在依普朗培养基中培养7天和14天时检测到细胞外酯酶活性以及较低的脲酶活性,但未检测到蛋白酶活性。八个最佳的依普朗降解真菌也能够不同程度地降解高度难降解的PE-PU型固体泡沫,最高可产生高达65%的干重损失,这是此前未报道过的。对经真菌处理的泡沫进行扫描电子显微镜(SEM)分析表明,与未经真菌处理的泡沫相比,其细胞壁结构融化且变薄,证明了真菌对PE-PU的生物降解作用。
聚氨酯废物处理已成为一个严重问题。在这项工作中,报道了能够有效降解不同类型聚氨酯的真菌菌株,并通过不同实验方法研究了它们的生物降解活性。清漆生物降解分析表明,真菌能够将聚合物分解为其一些前体,这为它们可能被回收并用于新的聚氨酯合成提供了可能性。此外,这项工作中报道的固体聚醚聚氨酯泡沫的降解程度此前从未见过。分离高效的聚氨酯降解微生物并深入研究它们用于降解聚合物的机制,为开发聚氨酯生物降解和回收的生物技术工艺提供了基础。