Suppr超能文献

基于有限种群数据预测邻域依赖性微生物相互作用

Prediction of Neighbor-Dependent Microbial Interactions From Limited Population Data.

作者信息

Lee Joon-Yong, Haruta Shin, Kato Souichiro, Bernstein Hans C, Lindemann Stephen R, Lee Dong-Yup, Fredrickson Jim K, Song Hyun-Seob

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.

Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan.

出版信息

Front Microbiol. 2020 Jan 21;10:3049. doi: 10.3389/fmicb.2019.03049. eCollection 2019.

Abstract

Modulation of interspecies interactions by the presence of neighbor species is a key ecological factor that governs dynamics and function of microbial communities, yet the development of theoretical frameworks explicit for understanding context-dependent interactions are still nascent. In a recent study, we proposed a novel rule-based inference method termed the Minimal Interspecies Interaction Adjustment (MIIA) that predicts the reorganization of interaction networks in response to the addition of new species such that the modulation in interaction coefficients caused by additional members is minimal. While the theoretical basis of MIIA was established through the previous work by assuming the full availability of species abundance data in axenic, binary, and complex communities, its extension to actual microbial ecology can be highly constrained in cases that species have not been cultured axenically (e.g., due to their inability to grow in the absence of specific partnerships) because binary interaction coefficients - basic parameters required for implementing the MIIA - are inestimable without axenic and binary population data. Thus, here we present an alternative formulation based on the following two central ideas. First, in the case where only data from axenic cultures are unavailable, we remove axenic populations from governing equations through appropriate scaling. This allows us to predict neighbor-dependent interactions in a sense (i.e., fractional change of interactions between with versus without neighbors). Second, in the case where both axenic and binary populations are missing, we parameterize binary interaction coefficients to determine their values through a sensitivity analysis. Through the case study of two microbial communities with distinct characteristics and complexity (i.e., a three-member community where all members can grow independently, and a four-member community that contains member species whose growth is dependent on other species), we demonstrated that despite data limitation, the proposed new formulation was able to successfully predict interspecies interactions that are consistent with experimentally derived results. Therefore, this technical advancement enhances our ability to predict context-dependent interspecies interactions in a broad range of microbial systems without being limited to specific growth conditions as a pre-requisite.

摘要

邻近物种的存在对种间相互作用的调节是控制微生物群落动态和功能的关键生态因素,然而,用于理解上下文依赖相互作用的明确理论框架仍处于起步阶段。在最近的一项研究中,我们提出了一种新的基于规则的推理方法,称为最小种间相互作用调整(MIIA),该方法预测相互作用网络响应新物种添加的重组,使得由额外成员引起的相互作用系数的调制最小。虽然MIIA的理论基础是通过先前的工作建立的,假设在无菌、二元和复杂群落中物种丰度数据完全可用,但在物种未在无菌条件下培养的情况下(例如,由于它们在没有特定伙伴关系的情况下无法生长),其扩展到实际微生物生态学可能受到高度限制,因为二元相互作用系数——实施MIIA所需的基本参数——在没有无菌和二元种群数据的情况下是无法估计的。因此,在这里,我们基于以下两个核心思想提出了一种替代公式。首先,在仅无菌培养数据不可用的情况下,我们通过适当的缩放从控制方程中去除无菌种群。这使我们能够在某种意义上预测邻域依赖的相互作用(即有邻居与无邻居时相互作用的分数变化)。其次,在无菌和二元种群都缺失的情况下,我们对二元相互作用系数进行参数化,通过敏感性分析来确定它们的值。通过对两个具有不同特征和复杂性的微生物群落的案例研究(即一个所有成员都能独立生长的三元群落,以及一个包含其生长依赖于其他物种的成员物种的四元群落),我们证明了尽管存在数据限制,所提出的新公式能够成功预测与实验得出的结果一致的种间相互作用。因此,这一技术进步增强了我们在广泛的微生物系统中预测上下文依赖的种间相互作用的能力,而不限于特定的生长条件作为前提。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/533f/6985286/923a6cbaed70/fmicb-10-03049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验