Chen Heng-Chang
Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stablowicka 147, 54-066, Wrocław, Poland.
J Transl Med. 2025 Aug 13;23(1):906. doi: 10.1186/s12967-025-06919-z.
In the "omics" era, studies often utilize large-scale datasets, eliciting the overall functional machinery of a network's organization. In this context, determining how to read the enormous number of interactions in a network is imperative to comprehend its functional organization. Topology is the principal attribute of any network; as such, topological properties help to elucidate the roles of entities and represent a network's behavior. In this review, I showcase the foundational concepts involved in graph theory, which form the basis of network biology, and exemplify the application of this conceptual framework to bridge the connection between the task-evoked functional genome network of the HIV reservoir. Furthermore, I point out potential longitudinal biomarkers identified using network-based analysis and systematically compare them with other potential biomarkers identified based on experimental research with longitudinal clinical samples.
在“组学”时代,研究通常利用大规模数据集,以揭示网络组织的整体功能机制。在此背景下,确定如何解读网络中大量的相互作用对于理解其功能组织至关重要。拓扑结构是任何网络的主要属性;因此,拓扑特性有助于阐明实体的作用并代表网络的行为。在本综述中,我展示了图论中涉及的基础概念,这些概念构成了网络生物学的基础,并举例说明了这一概念框架在弥合HIV病毒库任务诱发功能基因组网络之间联系方面的应用。此外,我指出了使用基于网络的分析确定的潜在纵向生物标志物,并系统地将它们与基于纵向临床样本的实验研究确定的其他潜在生物标志物进行比较。