Suppr超能文献

在不同边界层条件下通过主动热成像法定量估算叶片传热系数

Quantitative Estimation of Leaf Heat Transfer Coefficients by Active Thermography at Varying Boundary Layer Conditions.

作者信息

Albrecht Hendrik, Fiorani Fabio, Pieruschka Roland, Müller-Linow Mark, Jedmowski Christoph, Schreiber Lukas, Schurr Ulrich, Rascher Uwe

机构信息

Institute of Bio- and Geosciences, IBG-2: Plant Science, Forschungszentrum Jülich, Jülich, Germany.

Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Bonn, Germany.

出版信息

Front Plant Sci. 2020 Jan 21;10:1684. doi: 10.3389/fpls.2019.01684. eCollection 2019.

Abstract

Quantifying heat and mass exchanges processes of plant leaves is crucial for detailed understanding of dynamic plant-environment interactions. The two main components of these processes, convective heat transfer, and transpiration, are inevitably coupled as both processes are restricted by the leaf boundary layer. To measure leaf heat capacity and leaf heat transfer coefficient, we thoroughly tested and applied an active thermography method that uses a transient heat pulse to compute τ, the time constant of leaf cooling after release of the pulse. We validated our approach in the laboratory on intact leaves of spring barley (Hordeum vulgare) and common bean (Phaseolus vulgaris), and measured τ-changes at different boundary layer conditions.By modeling the leaf heat transfer coefficient with dimensionless numbers, we could demonstrate that τ improves our ability to close the energy budget of plant leaves and that modeling of transpiration requires considerations of convection. Applying our approach to thermal images we obtained spatio-temporal maps of τ, providing observations of local differences in thermal responsiveness of leaf surfaces. We propose that active thermography is an informative methodology to measure leaf heat transfer and derive spatial maps of thermal responsiveness of leaves contributing to improve models of leaf heat transfer processes.

摘要

量化植物叶片的热量和质量交换过程对于详细了解动态的植物 - 环境相互作用至关重要。这些过程的两个主要组成部分,即对流热传递和蒸腾作用,不可避免地相互耦合,因为这两个过程都受到叶片边界层的限制。为了测量叶片热容量和叶片传热系数,我们全面测试并应用了一种主动热成像方法,该方法使用瞬态热脉冲来计算 τ,即脉冲释放后叶片冷却的时间常数。我们在实验室中对春大麦(Hordeum vulgare)和菜豆(Phaseolus vulgaris)的完整叶片验证了我们的方法,并测量了不同边界层条件下的 τ 变化。通过用无量纲数对叶片传热系数进行建模,我们可以证明 τ 提高了我们闭合植物叶片能量平衡的能力,并且蒸腾作用的建模需要考虑对流。将我们的方法应用于热图像,我们获得了 τ 的时空图,提供了叶片表面热响应局部差异的观测结果。我们提出主动热成像法是一种用于测量叶片传热并得出叶片热响应空间图的信息丰富的方法,有助于改进叶片传热过程的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验