Institute of Psychology, Leiden University.
Department of Psychology, University of Zurich.
Psychol Methods. 2020 Oct;25(5):636-652. doi: 10.1037/met0000256. Epub 2020 Feb 10.
Prediction rule ensembles (PREs) are a relatively new statistical learning method, which aim to strike a balance between predictive performance and interpretability. Starting from a decision tree ensemble, like a boosted tree ensemble or a random forest, PREs retain a small subset of tree nodes in the final predictive model. These nodes can be written as simple rules of the form if [condition] then [prediction]. As a result, PREs are often much less complex than full decision tree ensembles, while they have been found to provide similar predictive performance in many situations. The current article introduces the methodology and shows how PREs can be fitted using the R package pre through several real-data examples from psychological research. The examples also illustrate a number of features of package pre that may be particularly useful for applications in psychology: support for categorical, multivariate and count responses, application of (non)negativity constraints, inclusion of confirmatory rules and standardized variable importance measures. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
预测规则集成 (PREs) 是一种相对较新的统计学习方法,旨在在预测性能和可解释性之间取得平衡。从决策树集成(如提升树集成或随机森林)开始,PREs 在最终预测模型中保留一小部分树节点。这些节点可以写成简单的规则形式,例如“如果[条件],则[预测]”。因此,PREs 通常比完整的决策树集成简单得多,但在许多情况下,它们被发现提供了类似的预测性能。本文介绍了该方法,并通过来自心理学研究的几个真实数据示例展示了如何使用 R 包 pre 来拟合 PREs。这些示例还说明了包 pre 的一些可能对心理学应用特别有用的功能:支持分类、多元和计数响应、(非)负性约束的应用、确认规则的包含和标准化变量重要性度量。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。