Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Néphrologie, Université Claude Bernard Lyon 1, Lyon, France.
Pharmacie, Hospices Civils de Lyon, EMR3738 Ciblage thérapeutique en oncologie, Université Claude Bernard Lyon 1, Lyon, France.
Nephrol Dial Transplant. 2020 Aug 1;35(8):1420-1425. doi: 10.1093/ndt/gfz295.
All-cause mortality in haemodialysis (HD) is high, reaching 15.6% in the first year according to the European Renal Association.
A new clinical tool to predict all-cause mortality in HD patients is proposed. It uses a post hoc analysis of data from the prospective cohort study Photo-Graph V3. A total of 35 variables related to patient characteristics, laboratory values and treatments were used as predictors of all-cause mortality. The first step was to compare the results obtained using a logistic regression to those obtained by a Bayesian network. The second step aimed to increase the performance of the best prediction model using synthetic data. Finally, a compromise between performance and ergonomics was proposed by reducing the number of variables to be entered in the prediction tool.
Among the 9010 HD patients included in the Photo-Graph V3 study, 4915 incident patients with known medical status at 2 years were analysed. All-cause mortality at 2 years was 34.1%. The Bayesian network provided the most reliable prediction. The final optimized models that used 14 variables had areas under the receiver operating characteristic curves of 0.78 ± 0.01, sensitivity of 72 ± 2%, specificity of 69 ± 2%, predictive positive value of 70 ± 1% and negative predictive value of 71 ± 2% for the prediction of all-cause mortality.
Using artificial intelligence methods, a new clinical tool to predict all-cause mortality in incident HD patients is proposed. The latter can be used for research purposes before its external validation at: https://www.hed.cc/? a=twoyearsallcausemortalityhemod&n=2-years%20All-cause%20Mortality%20Hemodialysis.neta.
根据欧洲肾脏协会的数据,血液透析(HD)患者的全因死亡率很高,第一年达到 15.6%。
提出了一种新的临床工具,用于预测 HD 患者的全因死亡率。它使用前瞻性队列研究 Photo-Graph V3 的事后分析数据。总共使用了 35 个与患者特征、实验室值和治疗相关的变量作为全因死亡率的预测因子。第一步是比较逻辑回归和贝叶斯网络得到的结果。第二步旨在使用合成数据提高最佳预测模型的性能。最后,通过减少预测工具中需要输入的变量数量,在性能和易用性之间提出了一个折衷方案。
在 Photo-Graph V3 研究中纳入的 9010 例 HD 患者中,分析了已知 2 年医疗状况的 4915 例新发病例患者。2 年全因死亡率为 34.1%。贝叶斯网络提供了最可靠的预测。使用 14 个变量的最终优化模型的受试者工作特征曲线下面积为 0.78±0.01,灵敏度为 72±2%,特异性为 69±2%,阳性预测值为 70±1%,阴性预测值为 71±2%,用于预测全因死亡率。
使用人工智能方法,提出了一种新的临床工具,用于预测新发病例 HD 患者的全因死亡率。在外部验证之前,后者可用于研究目的:https://www.hed.cc/?a=twoyearsallcausemortalityhemod&n=2-years%20All-cause%20Mortality%20Hemodialysis.neta。