Kishore Ravi Anant, Nozariasbmarz Amin, Poudel Bed, Priya Shashank
Center for Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, Virginia 24061, United States.
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10389-10401. doi: 10.1021/acsami.9b21299. Epub 2020 Feb 20.
Thermoelectric power generation is a reliable energy harvesting technique for directly converting heat into electricity. Recent studies have reported the thermal-to-electrical energy conversion efficiency of thermoelectric generators (TEGs) up to 11% under laboratory settings. However, the practical efficiency of TEGs deployed under real environments is still not more than a few percent. In this study, we provide fundamental insight on the operation of TEGs in realistic environments by illustrating the combinatory effect of thermoelectric material properties, device boundary conditions, and environmental thermal resistivity on TEG performance in conjunction with the module parameters. Using numerical and experimental studies, we demonstrate the existence of a critical heat transfer coefficient that dramatically affects the design and performance of TEGs. Results provide a set of concrete design criteria for developing efficient TEGs that meet the metrics for field deployments. High-performance TEGs demonstrated in this study generated up to 28% higher power and 162% higher power per unit mass of thermoelectric materials as compared to the commercial module deployed for low-grade waste heat recovery. This advancement in understanding the TEG operation will have a transformative impact on the development of scalable thermal energy harvesters and in realizing their practical targets for efficiency, power density, and total output power.
热电发电是一种可靠的能量收集技术,可直接将热能转化为电能。最近的研究报告称,在实验室环境下,热电发电机(TEG)的热电能量转换效率高达11%。然而,在实际环境中部署的TEG的实际效率仍不超过百分之几。在本研究中,我们通过结合模块参数,阐述热电材料特性、器件边界条件和环境热阻对TEG性能的组合效应,从而深入了解TEG在实际环境中的运行情况。通过数值和实验研究,我们证明了存在一个临界传热系数,它会显著影响TEG的设计和性能。研究结果为开发符合现场部署指标的高效TEG提供了一套具体的设计标准。与用于低品位废热回收的商用模块相比,本研究中展示的高性能TEG产生的功率高达28%,每单位质量热电材料产生的功率高达162%。对TEG运行理解的这一进展将对可扩展热能收集器的开发以及实现其在效率、功率密度和总输出功率方面的实际目标产生变革性影响。