Li Wenjie, Nozariasbmarz Amin, Kishore Ravi Anant, Kang Han Byul, Dettor Carter, Zhu Hangtian, Poudel Bed, Priya Shashank
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401 United States.
ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53935-53944. doi: 10.1021/acsami.1c16117. Epub 2021 Oct 26.
Thermoelectric generators (TEGs) exploiting the Seebeck effect provide a promising solution for waste heat recovery. Among the large number of thermoelectric (TE) materials, half-Heusler (hH) alloys are leading candidates for medium- to high-temperature power generation applications. However, the fundamental challenge in this field has been inhomogeneous material properties at large wafer diameters, insufficient power output from the modules, and rigid form factors of TE modules. This has restricted the transition of TEGs in practical applications for over three decades. Here, we successfully demonstrate large diameter wafers with uniform TE properties, high-power conformal hH TE modules for high-temperature application, and their direct integration on flue gas platforms, such as cylindrical tubes, to form large area flexible TEGs. This new conformal architecture design provides a breakthrough toward medium-/high-temperature TEGs over the conventional BiTe- and polymer-based flexible TEG design. A variable fill factor and greater flexibility due to the conformal design result in higher device performance as compared to conventional rigid TEG devices. Modules with 72-couple hH legs exhibit a device high-power-density of 3.13 W cm and a total output power of 56.6 W under a temperature difference of 570 °C. These results provide a promising pathway toward widespread utilization of thermoelectric technology into the waste heat recovery application and will have a significant impact on the development of practical thermal to electrical converters.
利用塞贝克效应的热电发电机(TEG)为废热回收提供了一种很有前景的解决方案。在众多热电(TE)材料中,半赫斯勒(hH)合金是中高温发电应用的主要候选材料。然而,该领域的根本挑战在于大尺寸晶圆直径下材料性质的不均匀、模块的功率输出不足以及TE模块的刚性外形因素。这限制了TEG在实际应用中的转型超过三十年。在此,我们成功展示了具有均匀TE性质的大直径晶圆、用于高温应用的高功率共形hH TE模块,以及它们在诸如圆柱形管等烟道气平台上的直接集成,以形成大面积柔性TEG。这种新的共形架构设计相对于传统的基于BiTe和聚合物的柔性TEG设计,为中/高温TEG带来了突破。与传统刚性TEG器件相比,共形设计带来的可变填充因子和更大的灵活性导致更高的器件性能。具有72对hH腿的模块在570℃的温差下表现出3.13W/cm的器件高功率密度和56.6W的总输出功率。这些结果为热电技术广泛应用于废热回收应用提供了一条有前景的途径,并将对实际热电器件的发展产生重大影响。