Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden.
J Phys Chem B. 2020 Mar 5;124(9):1703-1714. doi: 10.1021/acs.jpcb.9b11793. Epub 2020 Feb 20.
The amide I region of the infrared spectrum is related to the protein backbone conformation and can provide important structural information. However, the interpretation of the experimental results is hampered because the theoretical description of the amide I spectrum is still under development. Quantum mechanical calculations, for example, using density functional theory (DFT), can be used to study the amide I spectrum of small systems, but the high computational cost makes them inapplicable to proteins. Other approaches that solve the eigenvalues of the coupled amide I oscillator system are used instead. An important interaction to be considered is transition dipole coupling (TDC). Its calculation depends on the parameters of the transition dipole moment. This work aims to find the optimal parameters for TDC in three major secondary structures: α-helices, antiparallel β-sheets, and parallel β-sheets. The parameters were suggested through a comparison between DFT and TDC calculations. The comparison showed a good agreement for the spectral shape and for the wavenumbers of the normal modes for all secondary structures. The matching between the two methods improved when hydrogen bonding to the amide oxygen was considered. Optimal parameters for individual secondary structures were also suggested.
红外光谱的酰胺 I 区域与蛋白质骨架构象有关,可提供重要的结构信息。然而,由于酰胺 I 谱的理论描述仍在发展中,实验结果的解释受到了阻碍。例如,使用密度泛函理论(DFT)的量子力学计算可用于研究小系统的酰胺 I 谱,但计算成本高使得它们不适用于蛋白质。因此,转而采用求解耦合酰胺 I 振子系统本征值的其他方法。需要考虑的一个重要相互作用是跃迁偶极耦合(TDC)。其计算取决于跃迁偶极矩的参数。这项工作旨在为α-螺旋、反平行β-折叠和平行β-折叠三种主要二级结构中的 TDC 找到最佳参数。通过 DFT 和 TDC 计算的比较提出了这些参数。对于所有二级结构,比较表明在光谱形状和正则模态的波数方面都有很好的一致性。当考虑与酰胺氧的氢键时,两种方法之间的匹配度会提高。还为各个二级结构提出了最佳参数。