Suppr超能文献

用于预测自行车计时赛成绩的场地衍生功率-持续时间变量

Field-Derived Power-Duration Variables to Predict Cycling Time-Trial Performance.

作者信息

Nimmerichter Alfred, Prinz Bernhard, Gumpenberger Matthias, Heider Sebastian, Wirth Klaus

出版信息

Int J Sports Physiol Perform. 2020 Feb 10;15(8):1095-1102. doi: 10.1123/ijspp.2019-0621. Print 2020 Sep 1.

Abstract

PURPOSE

To evaluate the predictive validity of critical power (CP) and the work above CP (W') on cycling performance (mean power during a 20-min time trial; TT20).

METHODS

On 3 separate days, 10 male cyclists completed a TT20 and 3 CP and W' prediction trials of 1, 4, and 10 min and 2, 7, and 12 min in field conditions. CP and W' were modeled across combinations of these prediction trials with the hyperbolic, linear work/time, and linear power inverse-time (INV) models. The agreement and the uncertainty between the predicted and actual TT20 were assessed with 95% limits of agreement and a probabilistic approach, respectively.

RESULTS

Differences between the predicted and actual TT20 were "trivial" for most of the models if the 1-min trial was not included. Including the 1-min trial in the INV and linear work/time models "possibly" to "very likely" overestimated TT20. The INV model provided the smallest total error (ie, best individual fit; 6%) for all cyclists (305 [33] W; 19.6 [3.6] kJ). TT20 predicted from the best individual fit-derived CP, and W' was strongly correlated with actual TT20 (317 [33] W; r = .975; P < .001). The bias and 95% limits of agreement were 4 (7) W (-11 to 19 W).

CONCLUSIONS

Field-derived CP and W' accurately predicted cycling performance in the field. The INV model was most accurate to predict TT20 (1.3% [2.4%]). Adding a 1-min-prediction trial resulted in large total errors, so it should not be included in the models.

摘要

目的

评估临界功率(CP)和高于CP的功(W')对骑行表现(20分钟计时赛中的平均功率;TT20)的预测效度。

方法

在3个不同日期,10名男性自行车运动员在野外条件下完成了一次TT20以及3次CP和W'预测试验,分别为1分钟、4分钟和10分钟以及2分钟、7分钟和12分钟。CP和W'通过双曲线、线性功/时间和线性功率倒数时间(INV)模型,在这些预测试验的组合中进行建模。分别使用95%一致性界限和概率方法评估预测的TT20与实际TT20之间的一致性和不确定性。

结果

如果不包括1分钟试验,大多数模型预测的TT20与实际TT20之间的差异“微不足道”。在INV和线性功/时间模型中纳入1分钟试验“可能”到“非常可能”高估了TT20。INV模型为所有自行车运动员(功率305[33]W;功19.6[3.6]kJ)提供了最小的总误差(即最佳个体拟合;6%)。从最佳个体拟合得出的CP和W'预测的TT20与实际TT20高度相关(功率317[33]W;r = 0.975;P < 0.001)。偏差和95%一致性界限为4(7)W(-11至19W)。

结论

野外得出的CP和W'准确预测了野外的骑行表现。INV模型预测TT20最为准确(1.3%[2.4%])。添加1分钟预测试验会导致较大的总误差,因此不应将其纳入模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验