嗜热嗜酸甲烷营养菌 Methylacidiphilum fumariolicum SolV 氧化亚大气压力 H 用高亲和力的、膜相关的[NiFe]氢化酶。
The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H with a high-affinity, membrane-associated [NiFe] hydrogenase.
机构信息
Department of Microbiology, Radboud University, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, The Netherlands.
Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
出版信息
ISME J. 2020 May;14(5):1223-1232. doi: 10.1038/s41396-020-0609-3. Epub 2020 Feb 10.
The trace amounts (0.53 ppmv) of atmospheric hydrogen gas (H) can be utilized by microorganisms to persist during dormancy. This process is catalyzed by certain Actinobacteria, Acidobacteria, and Chloroflexi, and is estimated to convert 75 × 10 g H annually, which is half of the total atmospheric H. This rapid atmospheric H turnover is hypothesized to be catalyzed by high-affinity [NiFe] hydrogenases. However, apparent high-affinity H oxidation has only been shown in whole cells, rather than for the purified enzyme. Here, we show that the membrane-associated hydrogenase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV possesses a high apparent affinity (K = 140 nM) for H and that methanotrophs can oxidize subatmospheric H. Our findings add to the evidence that the group 1h [NiFe] hydrogenase is accountable for atmospheric H oxidation and that it therefore could be a strong controlling factor in the global H cycle. We show that the isolated enzyme possesses a lower affinity (K = 300 nM) for H than the membrane-associated enzyme. Hence, the membrane association seems essential for a high affinity for H. The enzyme is extremely thermostable and remains folded up to 95 °C. Strain SolV is the only known organism in which the group 1h [NiFe] hydrogenase is responsible for rapid growth on H as sole energy source as well as oxidation of subatmospheric H. The ability to conserve energy from H could increase fitness of verrucomicrobial methanotrophs in geothermal ecosystems with varying CH fluxes. We propose that H oxidation can enhance growth of methanotrophs in aerated methane-driven ecosystems. Group 1h [NiFe] hydrogenases could therefore contribute to mitigation of global warming, since CH is an important and extremely potent greenhouse gas.
痕量(0.53ppm)的大气氢气(H)可以被微生物利用来在休眠期间维持生命。这个过程是由某些放线菌、酸杆菌和绿弯菌催化的,据估计,每年有 75×10^9g H 被转化,这是大气 H 的一半。这种快速的大气 H 转化被假设是由高亲和力[NiFe]氢化酶催化的。然而,高亲和力的 H 氧化仅在完整细胞中显示,而不是在纯化的酶中。在这里,我们表明,来自嗜热嗜酸甲烷营养菌 Methylacidiphilum fumariolicum SolV 的膜结合氢化酶对 H 具有高的表观亲和力(K=140nM),并且甲烷营养菌可以氧化亚大气 H。我们的发现增加了证据表明,第 1 组[NiFe]氢化酶负责大气 H 氧化,因此它可能是全球 H 循环的一个强有力的控制因素。我们表明,分离的酶对 H 的亲和力(K=300nM)低于膜结合酶。因此,膜结合对于高亲和力 H 是必不可少的。该酶具有极高的热稳定性,直到 95°C 仍保持折叠状态。SolV 菌株是唯一已知的生物体,其中第 1 组[NiFe]氢化酶负责以 H 作为唯一能源快速生长以及氧化亚大气 H。从 H 中保存能量的能力可以增加地热生态系统中疣状甲烷营养菌的适应性,因为 CH 是一种重要的、极其有效的温室气体。我们提出,H 氧化可以增强好氧甲烷驱动生态系统中甲烷营养菌的生长。第 1 组[NiFe]氢化酶因此可能有助于缓解全球变暖,因为 CH 是一种重要的、极其有效的温室气体。