Suppr超能文献

对氢化酶分布的基因组和宏基因组调查表明,氢气是微生物生长和存活广泛利用的能源。

Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.

作者信息

Greening Chris, Biswas Ambarish, Carere Carlo R, Jackson Colin J, Taylor Matthew C, Stott Matthew B, Cook Gregory M, Morales Sergio E

机构信息

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.

The Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Acton, Australian Capital Territory, Australia.

出版信息

ISME J. 2016 Mar;10(3):761-77. doi: 10.1038/ismej.2015.153. Epub 2015 Sep 25.

Abstract

Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H2) is a niche process. To gain a broader insight into the importance of microbial H2 metabolism, we comprehensively surveyed the genomic and metagenomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H2. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified. We predict that this hydrogenase diversity supports H2-based respiration, fermentation and carbon fixation processes in both oxic and anoxic environments, in addition to various H2-sensing, electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic and host-associated metagenomes in varying proportions, indicating a broad ecological distribution and utilisation. Oxygen content (pO2) appears to be a central factor driving the phylum- and ecosystem-level distribution of these genes. In addition to compounding evidence that H2 was the first electron donor for life, our analysis suggests that the great diversification of hydrogenases has enabled H2 metabolism to sustain the growth or survival of microorganisms in a wide range of ecosystems to the present day. This work also provides a comprehensive expanded system for classifying hydrogenases and identifies new prospects for investigating H2 metabolism.

摘要

最近的生理学和生态学研究对长期以来认为分子氢(H₂)的微生物代谢是一个小众过程的观点提出了挑战。为了更全面地了解微生物H₂代谢的重要性,我们全面调查了氢化酶的基因组和宏基因组分布,氢化酶是催化H₂氧化和生成的可逆酶。从公开可用的数据库中整理出3286个非冗余假定氢化酶的蛋白质序列。这些金属酶根据以下因素分为多个组:(1)氨基酸序列系统发育,(2)金属结合基序,(3)预测的基因组织,以及(4)报道的生化特性。鉴定出了四组(22个亚组)[NiFe] - 氢化酶、三组(6个亚型)[FeFe] - 氢化酶和一小组[Fe] - 氢化酶。我们预测,这种氢化酶的多样性除了支持各种H₂传感、电子分叉和能量转换机制外,还在有氧和无氧环境中支持基于H₂的呼吸、发酵和碳固定过程。在51个细菌和古菌门中鉴定出了氢化酶编码基因,这表明垂直和横向获取都面临强大压力。此外,氢化酶基因可以从不同比例的各种陆地、水生和宿主相关宏基因组中回收,这表明其具有广泛的生态分布和利用。氧含量(pO₂)似乎是驱动这些基因在门和生态系统水平分布的核心因素。除了越来越多的证据表明H₂是生命的第一个电子供体外,我们的分析表明,氢化酶的巨大多样化使H₂代谢能够维持微生物在广泛生态系统中的生长或生存直至今日。这项工作还提供了一个全面扩展的氢化酶分类系统,并确定了研究H₂代谢的新前景。

相似文献

2
[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
Biochim Biophys Acta. 2015 Jun;1853(6):1350-69. doi: 10.1016/j.bbamcr.2014.11.021. Epub 2014 Nov 24.
3
Minimal and hybrid hydrogenases are active from archaea.
Cell. 2024 Jun 20;187(13):3357-3372.e19. doi: 10.1016/j.cell.2024.05.032. Epub 2024 Jun 11.
4
Energy-converting hydrogenases: the link between H metabolism and energy conservation.
Cell Mol Life Sci. 2020 Apr;77(8):1461-1481. doi: 10.1007/s00018-019-03329-5. Epub 2019 Oct 19.
5
H2 metabolism is widespread and diverse among human colonic microbes.
Gut Microbes. 2016 May 3;7(3):235-45. doi: 10.1080/19490976.2016.1182288.
6
Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications.
Crit Rev Microbiol. 2008;34(3-4):117-30. doi: 10.1080/10408410802240893.
7
Hydrogenases and H metabolism in sulfate-reducing bacteria of the Desulfovibrio genus.
Adv Microb Physiol. 2019;74:143-189. doi: 10.1016/bs.ampbs.2019.03.001. Epub 2019 Apr 22.
10
Distribution analysis of hydrogenases in surface waters of marine and freshwater environments.
PLoS One. 2010 Nov 5;5(11):e13846. doi: 10.1371/journal.pone.0013846.

引用本文的文献

2
Hydrogen Oxidation Benefits Alphaproteobacterial Methanotrophs Under Severe Methane Limitation.
Environ Microbiol. 2025 Aug;27(8):e70163. doi: 10.1111/1462-2920.70163.
4
Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss.
Nat Commun. 2025 May 31;16(1):5078. doi: 10.1038/s41467-025-60327-x.
5
Polyphenol rewiring of the microbiome reduces methane emissions.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf108.
7
H-cluster Intermediates and Catalytic Properties of [FeFe]-Hydrogenase III.
Biochemistry. 2025 Jun 3;64(11):2455-2466. doi: 10.1021/acs.biochem.5c00066. Epub 2025 May 13.
9
Microbial hydrogen oxidation potential in seasonally hypoxic Baltic Sea sediments.
Front Microbiol. 2025 Apr 4;16:1565157. doi: 10.3389/fmicb.2025.1565157. eCollection 2025.
10
Outlook on Synthetic Biology-Driven Hydrogen Production: Lessons from Algal Photosynthesis Applied to Cyanobacteria.
Energy Fuels. 2025 Mar 11;39(11):4987-5006. doi: 10.1021/acs.energyfuels.4c04772. eCollection 2025 Mar 20.

本文引用的文献

1
Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10497-502. doi: 10.1073/pnas.1508385112. Epub 2015 Aug 3.
3
Atmospheric hydrogen scavenging: from enzymes to ecosystems.
Appl Environ Microbiol. 2015 Feb;81(4):1190-9. doi: 10.1128/AEM.03364-14.
4
[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
Biochim Biophys Acta. 2015 Jun;1853(6):1350-69. doi: 10.1016/j.bbamcr.2014.11.021. Epub 2014 Nov 24.
5
Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria.
Nat Rev Microbiol. 2014 Dec;12(12):809-21. doi: 10.1038/nrmicro3365. Epub 2014 Nov 10.
6
Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.
Science. 2014 Aug 29;345(6200):1052-4. doi: 10.1126/science.1256985.
7
Bacterial formate hydrogenlyase complex.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3948-56. doi: 10.1073/pnas.1407927111. Epub 2014 Aug 25.
9
Connection between the membrane electron transport system and Hyn hydrogenase in the purple sulfur bacterium, Thiocapsa roseopersicina BBS.
Biochim Biophys Acta. 2014 Oct;1837(10):1691-8. doi: 10.1016/j.bbabio.2014.07.021. Epub 2014 Aug 8.
10
An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11479-84. doi: 10.1073/pnas.1407034111. Epub 2014 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验