Liang Yingying, Qin Yunke, Chen Jie, Xing Weilong, Zou Ye, Sun Yimeng, Xu Wei, Zhu Daoben
Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China.
University of Chinese Academy of Sciences Beijing 100049 China.
Adv Sci (Weinh). 2019 Nov 26;7(3):1902456. doi: 10.1002/advs.201902456. eCollection 2020 Feb.
Three isostructural donor-acceptor complexes DPTTA-F TCNQ ( = 1, 2, 4) are investigated experimentally and theoretically. By tuning the number of F atoms in the acceptor molecules, the resulting complexes display a continuous down shift of the valence band maximum, conducting band minimum, and optical bandgap. The majority carriers convert from hole (DPTTA-FTCNQ), balanced hole, and electron (DPTTA-FTCNQ) to electron (DPTTA-FTCNQ). This result shows that band engineering can be realized easily in the donor-acceptor complex systems by tuning the electron affinity of the acceptor. The bandgaps of these three complexes vary from 0.31 to 0.41 eV; this narrow bandgap feature is crucial for achieving high thermoelectric performance and the unintentional doping in DPTTA-FTCNQ leads to the effective suppression of the bipolar cancelling effect on the Seebeck coefficient and the highest power factor.
对三种同构的给体-受体复合物DPTTA-F TCNQ( = 1, 2, 4)进行了实验和理论研究。通过调节受体分子中F原子的数量,所得复合物的价带最大值、导带最小值和光学带隙呈现出连续的下移。多数载流子从空穴(DPTTA-FTCNQ)、平衡的空穴和电子(DPTTA-FTCNQ)转变为电子(DPTTA-FTCNQ)。该结果表明,通过调节受体的电子亲和势,在给体-受体复合物体系中可以轻松实现能带工程。这三种复合物的带隙在0.31至0.41 eV之间变化;这种窄带隙特性对于实现高热电性能至关重要,并且DPTTA-FTCNQ中的无意掺杂有效抑制了对塞贝克系数的双极抵消效应,并导致了最高的功率因子。