Suppr超能文献

慢性皮质硅微电极中神经退行性变和血管重塑的纵向多模态评估与信号降解的相关性

Longitudinal multimodal assessment of neurodegeneration and vascular remodeling correlated with signal degradation in chronic cortical silicon microelectrodes.

作者信息

Solarana Krystyna, Ye Meijun, Gao Yu-Rong, Rafi Harmain, Hammer Daniel X

机构信息

Food and Drug Administration, Center for Radiological Devices, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States.

出版信息

Neurophotonics. 2020 Jan;7(1):015004. doi: 10.1117/1.NPh.7.1.015004. Epub 2020 Jan 30.

Abstract

: Cortically implanted microelectrode arrays provide a direct interface with neuronal populations and are used to restore movement capabilities and provide sensory feedback to patients with paralysis or amputation. Penetrating electrodes experience high rates of signal degradation within the first year that limit effectiveness and lead to eventual device failure. : To assess vascular and neuronal changes over time in mice with implanted electrodes and examine the contribution of the brain tissue response to electrode performance. : We used a multimodal approach combining electrophysiology and subcellular-level optical imaging. : At acute timescales, we observed structural damage from the mechanical trauma of electrode insertion, evidenced by severed dendrites in the electrode path and local hypofluorescence. Superficial vessel growth and remodeling occurred within the first few weeks in both electrode-implanted and window-only animals, but the deeper capillary growth evident in window-only animals was suppressed in electrode-implanted animals. After longer implantation periods, there was evidence of degeneration of transected dendrites superficial to the electrode path and localized neuronal cell body loss, along with deep vascular velocity changes near the electrode. Total spike rate (SR) across all animals reached a peak between 3 and 9 months postimplantation, then decreased. The local field potential signal remained relatively constant for up to 6 months, particularly in the high-gamma band, indicating long-term electrode viability and neuronal functioning at further distances from the electrode, but it showed a reduction in some animals at later time points. Most importantly, we found that progressive high-gamma and SR reductions both correlate positively with localized cell loss and decreasing capillary density within of the electrode. : This multifaceted approach provided a more comprehensive picture of the ongoing biological response at the brain-electrode interface than can be achieved with postmortem histology alone and established a real-time relationship between electrophysiology and tissue damage.

摘要

皮层植入式微电极阵列提供了与神经元群体的直接接口,用于恢复运动能力并为瘫痪或截肢患者提供感觉反馈。穿透式电极在植入后的第一年信号退化率很高,这限制了其有效性并最终导致设备失效。

为了评估植入电极的小鼠随时间的血管和神经元变化,并研究脑组织反应对电极性能的影响。

我们采用了一种结合电生理学和亚细胞水平光学成像的多模态方法。

在急性时间尺度上,我们观察到电极插入的机械创伤造成的结构损伤,电极路径中被切断的树突和局部低荧光证明了这一点。在植入电极的动物和仅开颅的动物中,浅表血管生长和重塑在最初几周内都发生了,但仅开颅动物中明显的深部毛细血管生长在植入电极的动物中受到抑制。植入时间更长后,有证据表明电极路径上方横断的树突发生退化,局部神经元细胞体丢失,同时电极附近深部血管速度发生变化。所有动物的总尖峰率(SR)在植入后3至9个月达到峰值,然后下降。局部场电位信号在长达6个月的时间内保持相对稳定,特别是在高伽马波段,这表明电极在距电极更远的距离处具有长期的生存能力和神经元功能,但在后期的一些动物中它出现了下降。最重要的是,我们发现高伽马和SR的逐渐降低都与电极周围局部细胞丢失和毛细血管密度降低呈正相关。

这种多方面的方法比仅通过死后组织学能提供更全面的脑-电极界面持续生物学反应情况,并建立了电生理学与组织损伤之间的实时关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0e/6991888/7344e9a9b181/NPh-007-015004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验