Suppr超能文献

皮层兴奋性的局部扰动通过大规模功能网络以不同的方式传播。

Local Perturbations of Cortical Excitability Propagate Differentially Through Large-Scale Functional Networks.

机构信息

Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Graduate Program of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.

出版信息

Cereb Cortex. 2020 May 14;30(5):3352-3369. doi: 10.1093/cercor/bhz314.

Abstract

Electrophysiological recordings have established that GABAergic interneurons regulate excitability, plasticity, and computational function within local neural circuits. Importantly, GABAergic inhibition is focally disrupted around sites of brain injury. However, it remains unclear whether focal imbalances in inhibition/excitation lead to widespread changes in brain activity. Here, we test the hypothesis that focal perturbations in excitability disrupt large-scale brain network dynamics. We used viral chemogenetics in mice to reversibly manipulate parvalbumin interneuron (PV-IN) activity levels in whisker barrel somatosensory cortex. We then assessed how this imbalance affects cortical network activity in awake mice using wide-field optical neuroimaging of pyramidal neuron GCaMP dynamics as well as local field potential recordings. We report 1) that local changes in excitability can cause remote, network-wide effects, 2) that these effects propagate differentially through intra- and interhemispheric connections, and 3) that chemogenetic constructs can induce plasticity in cortical excitability and functional connectivity. These findings may help to explain how focal activity changes following injury lead to widespread network dysfunction.

摘要

电生理记录已经证实,γ-氨基丁酸能中间神经元调节局部神经网络回路中的兴奋性、可塑性和计算功能。重要的是,GABA 能抑制在脑损伤部位周围被局部破坏。然而,目前尚不清楚兴奋性的局部失衡是否会导致大脑活动的广泛变化。在这里,我们检验了兴奋性的局部扰动是否会破坏大脑的大规模网络动力学这一假设。我们使用病毒化学遗传学在小鼠中可逆地操纵触须桶感觉皮层中的 PV 中间神经元(PV-IN)活动水平。然后,我们使用广角光学神经影像学记录来评估这种不平衡如何影响清醒小鼠的皮层网络活动。我们报告 1)局部兴奋性的变化可以引起远程、全网的影响,2)这些影响通过同侧和对侧半球的连接而不同地传播,以及 3)化学遗传学构建体可以诱导皮层兴奋性和功能连接的可塑性。这些发现可能有助于解释损伤后局部活动变化如何导致广泛的网络功能障碍。

相似文献

3
Rapid Disinhibition by Adjustment of PV Intrinsic Excitability during Whisker Map Plasticity in Mouse S1.
J Neurosci. 2018 May 16;38(20):4749-4761. doi: 10.1523/JNEUROSCI.3628-17.2018. Epub 2018 Apr 20.
5
Inhibition by Somatostatin Interneurons in Olfactory Cortex.
Front Neural Circuits. 2016 Aug 17;10:62. doi: 10.3389/fncir.2016.00062. eCollection 2016.
6
Brain (Hyper)Excitability Revealed by Optimal Electrical Stimulation of GABAergic Interneurons.
Brain Stimul. 2016 Nov-Dec;9(6):919-932. doi: 10.1016/j.brs.2016.07.001. Epub 2016 Jul 15.
8
Distinct Roles of SOM and VIP Interneurons during Cortical Up States.
Front Neural Circuits. 2016 Jul 26;10:52. doi: 10.3389/fncir.2016.00052. eCollection 2016.
9
GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex.
Neuron. 2020 Jan 8;105(1):75-92.e5. doi: 10.1016/j.neuron.2019.10.008. Epub 2019 Nov 25.

引用本文的文献

1
Interhemispheric resting-state functional connectivity correlates with spontaneous neural interactions.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2505294122. doi: 10.1073/pnas.2505294122. Epub 2025 Aug 18.
2
Structure-function coupling in the first month of life: Associations with age and attention.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2412729122. doi: 10.1073/pnas.2412729122. Epub 2025 Jun 2.
3
Control of neurovascular coupling by ATP-sensitive potassium channels.
J Cereb Blood Flow Metab. 2025 Jun;45(6):1130-1143. doi: 10.1177/0271678X251313906. Epub 2025 Jan 17.
4
Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice.
Neurophotonics. 2025 Jan;12(Suppl 1):S14604. doi: 10.1117/1.NPh.12.S1.S14604. Epub 2024 Dec 20.
5
Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain.
Cell Rep. 2024 Sep 24;43(9):114723. doi: 10.1016/j.celrep.2024.114723. Epub 2024 Sep 13.
6
Arousal as a universal embedding for spatiotemporal brain dynamics.
bioRxiv. 2025 Feb 18:2023.11.06.565918. doi: 10.1101/2023.11.06.565918.
7
Network-specific metabolic and haemodynamic effects elicited by non-invasive brain stimulation.
Nat Ment Health. 2023 May;1(5):346-360. doi: 10.1038/s44220-023-00046-8. Epub 2023 May 1.
8
Functional network disorganization and cognitive decline following fractionated whole-brain radiation in mice.
Geroscience. 2024 Feb;46(1):543-562. doi: 10.1007/s11357-023-00944-w. Epub 2023 Sep 25.

本文引用的文献

1
2
Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks.
Neuron. 2019 Mar 20;101(6):1016-1028. doi: 10.1016/j.neuron.2019.01.043.
3
Interhemispheric plasticity is mediated by maximal potentiation of callosal inputs.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6391-6396. doi: 10.1073/pnas.1810132116. Epub 2019 Mar 7.
4
Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition.
Neuron. 2019 Jan 2;101(1):91-102.e4. doi: 10.1016/j.neuron.2018.10.049. Epub 2018 Nov 21.
5
Chemogenetic Recruitment of Specific Interneurons Suppresses Seizure Activity.
Front Cell Neurosci. 2018 Sep 5;12:293. doi: 10.3389/fncel.2018.00293. eCollection 2018.
7
Parvalbumin Interneurons Shape Neuronal Vulnerability in Blunt TBI.
Cereb Cortex. 2019 Jun 1;29(6):2701-2715. doi: 10.1093/cercor/bhy139.
8
Role of inhibitory control in modulating focal seizure spread.
Brain. 2018 Jul 1;141(7):2083-2097. doi: 10.1093/brain/awy116.
9
Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynamics and Laminar Structure.
Neuron. 2018 Apr 18;98(2):297-305.e6. doi: 10.1016/j.neuron.2018.03.015. Epub 2018 Mar 29.
10
Activity-Dependent Myelination of Parvalbumin Interneurons Mediated by Axonal Morphological Plasticity.
J Neurosci. 2018 Apr 11;38(15):3631-3642. doi: 10.1523/JNEUROSCI.0074-18.2018. Epub 2018 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验