Suppr超能文献

CIC 突变作为中枢神经系统累及髓外多发性骨髓瘤对 BRAF-MEK 联合抑制获得性耐药的分子机制。

CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement.

机构信息

Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.

Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy.

出版信息

Oncologist. 2020 Feb;25(2):112-118. doi: 10.1634/theoncologist.2019-0356. Epub 2019 Oct 18.

Abstract

Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KEY POINTS: BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAF mutation. Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach. Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma. The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its downregulation at gene expression level in multiple myeloma. CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time. CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential providing new clues in the extramedullary biology definition.

摘要

MEK-BRAF 联合抑制是 BRAF 突变癌症的一种成熟的治疗策略,在恶性黑色素瘤中最为明显,通过这种靶向治疗可获得持久的反应。然而,尽管存在 V600E 位置的激活突变,仍有一部分患者对治疗无反应,还有一部分患者在治疗过程中产生耐药性。潜在的耐药机制在很大程度上尚不清楚,也没有用于预测肿瘤对 BRAF-MEK 抑制剂治疗反应的诊断测试。多发性骨髓瘤是第二常见的血液系统恶性肿瘤,BRAF 中的点突变可在约 10%的患者中检测到。靶向抑制已成功应用,在相当一部分患者中观察到混合反应,反映了这种基因组复杂疾病的广泛空间异质性。中枢神经系统(CNS)受累是一种极其罕见的多发性骨髓瘤髓外形式,在不到 1%的患者中可诊断出。它被认为是一个终极高危特征,与不良细胞遗传学有关,即使应用了强烈的治疗,生存时间也很短,在大多数情况下不到 12 个月。在这里,我们不仅描述了首例对靶向达布拉非尼和曲美替尼治疗有反应的髓外 CNS 复发患者,而且还提供了证据表明,该患者的获得性耐药是由 CIC 基因内的 capicua 转录抑制因子(CIC)基因突变介导的。要点:BRAF 突变构成多发性骨髓瘤中一个有吸引力的可用药靶。这是对携带可用药 BRAF 突变的多发性骨髓瘤患者中枢神经系统受累进行的首次基因组剖析。对髓外病变的深度基因组特征分析促使采取了个性化的治疗方法。CIC 突变的获得赋予了多发性骨髓瘤 BRAF-MEK 抑制剂耐药的机制。对 CoMMpass 临床研究的计算分析揭示了 10 名多发性骨髓瘤患者存在 CIC 基因突变及其基因表达水平下调。CIC 基因沉默降低了多发性骨髓瘤细胞对 BRAF-MEK 抑制的敏感性。首次显示了多发性骨髓瘤 BRAF 突变细胞中 CIC 下调与 ETV4/5 核因子表达之间的相关性。CIC 突变、下调及其对 MMP24 的相关下游影响支持播散潜力,为髓外生物学定义提供了新线索。

相似文献

3
BRAF V600E-mutated metastatic pediatric Wilms tumor with complete response to targeted RAF/MEK inhibition.
Cold Spring Harb Mol Case Stud. 2020 Apr 1;6(2). doi: 10.1101/mcs.a004820. Print 2020 Apr.
5
promoter mutation determines apoptotic and therapeutic responses of -mutant cancers to BRAF and MEK inhibitors: Achilles Heel.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15846-15851. doi: 10.1073/pnas.2004707117. Epub 2020 Jun 19.
6
Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib.
Mol Cancer Ther. 2014 Feb;13(2):353-63. doi: 10.1158/1535-7163.MCT-13-0481. Epub 2014 Jan 7.
7
Single-Cell Profiling Reveals Metabolic Reprogramming as a Resistance Mechanism in -Mutated Multiple Myeloma.
Clin Cancer Res. 2021 Dec 1;27(23):6432-6444. doi: 10.1158/1078-0432.CCR-21-2040. Epub 2021 Sep 13.
8
Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAF non-small cell lung cancer.
Eur J Cancer. 2020 Jun;132:211-223. doi: 10.1016/j.ejca.2020.03.025. Epub 2020 May 6.
9
Mitogen-activated protein kinase (MEK) inhibitors to treat melanoma alone or in combination with other kinase inhibitors.
Expert Opin Drug Metab Toxicol. 2018 Mar;14(3):317-330. doi: 10.1080/17425255.2018.1432593. Epub 2018 Jan 30.
10
A phase 2 clinical trial of combined BRAF/MEK inhibition for BRAFV600E-mutated multiple myeloma.
Blood. 2023 Apr 6;141(14):1685-1690. doi: 10.1182/blood.2022017789.

引用本文的文献

1
Targeting the CD47-SIRPalpha checkpoint in multiple myeloma.
Discov Oncol. 2025 Aug 25;16(1):1616. doi: 10.1007/s12672-025-03312-6.
4
It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma.
J Neurooncol. 2025 Apr;172(2):327-345. doi: 10.1007/s11060-024-04930-w. Epub 2025 Jan 16.
5
Clonal competition assays identify fitness signatures in cancer progression and resistance in multiple myeloma.
Hemasphere. 2024 Jul 11;8(7):e110. doi: 10.1002/hem3.110. eCollection 2024 Jul.
6
Breaking through Multiple Myeloma: A Paradigm for a Comprehensive Tumor Ecosystem Targeting.
Biomedicines. 2023 Jul 24;11(7):2087. doi: 10.3390/biomedicines11072087.
7
A prognostic model for patients with primary extramedullary multiple myeloma.
Front Cell Dev Biol. 2022 Nov 25;10:1021587. doi: 10.3389/fcell.2022.1021587. eCollection 2022.
10
Recent advances in gene therapy: genetic bullets to the root of the problem.
Clin Exp Med. 2023 Aug;23(4):1107-1121. doi: 10.1007/s10238-022-00925-x. Epub 2022 Oct 25.

本文引用的文献

1
Clinical Pharmacokinetics and Pharmacodynamics of Dabrafenib.
Clin Pharmacokinet. 2019 Apr;58(4):451-467. doi: 10.1007/s40262-018-0703-0.
2
Spectrum and functional validation of PSMB5 mutations in multiple myeloma.
Leukemia. 2019 Feb;33(2):447-456. doi: 10.1038/s41375-018-0216-8. Epub 2018 Jul 19.
3
Mutational screening of newly diagnosed multiple myeloma patients by deep targeted sequencing.
Haematologica. 2018 Nov;103(11):e544-e548. doi: 10.3324/haematol.2018.188839. Epub 2018 Jun 28.
5
Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin protein MP0250: a preclinical study.
Oncotarget. 2018 Jan 30;9(17):13366-13381. doi: 10.18632/oncotarget.24351. eCollection 2018 Mar 2.
6
JAM-A as a prognostic factor and new therapeutic target in multiple myeloma.
Leukemia. 2018 Mar;32(3):736-743. doi: 10.1038/leu.2017.287. Epub 2017 Sep 28.
7
C-Methionine-PET in Multiple Myeloma: A Combined Study from Two Different Institutions.
Theranostics. 2017 Jul 23;7(11):2956-2964. doi: 10.7150/thno.20491. eCollection 2017.
8
Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing.
Nat Commun. 2017 Aug 16;8(1):268. doi: 10.1038/s41467-017-00296-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验