Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA.
Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Dev Biol. 2020 May 15;461(2):132-144. doi: 10.1016/j.ydbio.2020.02.006. Epub 2020 Feb 8.
The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.
颅面骨骼的形成是一个高度动态的过程,需要颅神经嵴细胞(cNCC)发育中各种细胞过程的适当协调,包括细胞迁移、增殖、分化、极性和细胞死亡。cNCC 发育过程中发生的改变会导致先天性出生缺陷和颅面异常,例如唇裂伴或不伴腭裂。虽然促进神经嵴发育的基因调控网络已经得到广泛研究,但这些途径以时空调节方式被激活或抑制的表观遗传机制在很大程度上仍然未知。染色质修饰物可以通过多种机制精确地修饰基因表达,包括组蛋白修饰,如甲基化。在这里,我们使用斑马鱼和小鼠的遗传模型研究了 PRDM(Positive regulatory domain)组蛋白甲基转移酶家族的两个成员 Prdm3 和 Prdm16 在颅面发育中的作用。斑马鱼中 prdm3 或 prdm16 的缺失会导致颅面缺陷,包括颅面软骨元素的发育不良、后鳃弓软骨的定义不明确以及蝶骨的矿化减少。在小鼠中,尽管早期胚胎中条件性缺失 Prdm3 会导致中孕期致死,但缺失 Prdm16 会导致颅面缺陷,包括下颌前发育不良、次生腭裂和严重的中耳缺陷。在斑马鱼中,prdm3 和 prdm16 可以相互补偿,以及第三个 Prdm 家族成员 prdm1a。prdm1a、prdm3 和 prdm16 等位基因的组合缺失会导致前软骨元素严重发育不良、颌关节异常形成、后鳃弓软骨完全缺失以及筛板裂。我们进一步确定,prdm3 和 prdm16 的缺失会降低斑马鱼中组蛋白 3 赖氨酸 9(抑制)和组蛋白 3 赖氨酸 4(激活)的甲基化。在小鼠中,Prdm16 的缺失显著降低了腭板中的组蛋白 3 赖氨酸 9 甲基化,但令人惊讶的是,组蛋白 3 赖氨酸 4 甲基化没有改变。总之,Prdm3 和 Prdm16 通过维持神经嵴细胞发育所必需的基因调控网络的时空调节,在颅面发育中发挥重要作用,这些功能在脊椎动物中是保守和不同的。