Gibot Laure, Demazeau Maxime, Pimienta Véronique, Mingotaud Anne-Françoise, Vicendo Patricia, Collin Fabrice, Martins-Froment Nathalie, Dejean Stéphane, Nottelet Benjamin, Roux Clément, Lonetti Barbara
Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, F-31062 Toulouse, France.
Service Commun de Spectrométrie de Masse (FR2599), Université de Toulouse III (Paul Sabatier), 118, route de Narbonne, F-31062 Toulouse Cedex 9, France.
Cancers (Basel). 2020 Feb 7;12(2):384. doi: 10.3390/cancers12020384.
The use of nanocarriers for hydrophobic photosensitizers, in the context of photodynamic therapy (PDT) to improve pharmacokinetics and bio-distribution, is well-established. However, the mechanisms at play in the internalization of nanocarriers are not well-elucidated, despite its importance in nanocarrier design. In this study, we focus on the mechanisms involved in copolymer poly(ethylene oxide)--poly(-caprolactone) PEO-PCL and poly(ethylene oxide)--poly styrene PEO-PS micelles - membrane interactions through complementary physico-chemical studies on biomimetic membranes, and biological experiments on two-dimensional (2D) and three-dimensional (3D) cell cultures. Förster Resonance Energy Transfer measurements on fluorescently-labelled lipid vesicles, and flow cytometry on two cancerous cell lines enabled the evaluation in the uptake of a photosensitizer, Pheophorbide (Pheo), and copolymer chains towards model membranes, and cells, respectively. The effects of calibrated light illumination for PDT treatment on lipid vesicle membranes, i.e., leakage and formation of oxidized lipids, and cell viability, were assessed. No significant differences were observed between the ability of PEO-PCL and PEO-PS micelles in delivering Pheo to model membranes, but Pheo was found in higher concentrations in cells in the case of PEO-PCL. These higher Pheo concentrations did not correspond to better performances in PDT treatment. We demonstrated that there are subtle differences in PEO-PCL and PEO-PS micelles for the delivery of Pheo.
在光动力疗法(PDT)中,使用纳米载体来包裹疏水性光敏剂以改善其药代动力学和生物分布,这一点已得到充分证实。然而,尽管纳米载体内化机制在纳米载体设计中至关重要,但目前尚未得到充分阐明。在本研究中,我们通过对仿生膜进行互补的物理化学研究以及对二维(2D)和三维(3D)细胞培养进行生物学实验,聚焦于共聚物聚(环氧乙烷)-聚(ε-己内酯)PEO-PCL和聚(环氧乙烷)-聚苯乙烯PEO-PS胶束与膜相互作用的机制。对荧光标记脂质体进行Förster共振能量转移测量,以及对两种癌细胞系进行流式细胞术分析,分别能够评估光敏剂脱镁叶绿酸(Pheo)和共聚物链对模型膜和细胞的摄取情况。评估了用于PDT治疗的校准光照对脂质体膜的影响,即氧化脂质的泄漏和形成,以及细胞活力。在将Pheo递送至模型膜的能力方面,未观察到PEO-PCL和PEO-PS胶束之间存在显著差异,但在PEO-PCL的情况下,细胞中发现Pheo的浓度更高。这些较高的Pheo浓度在PDT治疗中并未对应更好的效果。我们证明了在递送Pheo方面,PEO-PCL和PEO-PS胶束存在细微差异。