Suppr超能文献

零维硅量子点中的新兴原子能阶。

Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots.

作者信息

Shirahata Naoto, Nakamura Jin, Inoue Jun-Ichi, Ghosh Batu, Nemoto Kazuhiro, Nemoto Yoshihiro, Takeguchi Masaki, Masuda Yoshitake, Tanaka Masahiko, Ozin Geoffrey A

机构信息

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.

Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan.

出版信息

Nano Lett. 2020 Mar 11;20(3):1491-1498. doi: 10.1021/acs.nanolett.9b03157. Epub 2020 Feb 13.

Abstract

Driven by the emergence of colloidal semiconductor quantum dots (QDs) of tunable emission wavelengths, characteristic of exciton absorption peaks, outstanding photostability and solution processability in device fabrication have become a key tool in the development of nanomedicine and optoelectronics. Diamond cubic crystalline silicon (Si) QDs, with a diameter larger than 2 nm, terminated with hydrogen atoms are known to exhibit bulk-inherited spin and valley properties. Herein, we demonstrate a newly discovered size region of Si QDs, in which a fast radiative recombination on the order of hundreds of picoseconds is responsible for photoluminescence (PL). Despite retaining a crystallographic structure like the bulk, controlling their diameters in the 1.1-1.7 nm range realizes the strong PL with continuous spectral tunability in the 530-580 nm window, the narrow spectral line widths without emission tails, and the fast relaxation of photogenerated carriers. In contrast, QDs with diameters greater than 1.8 nm display the decay times on the microsecond order as well as the previous Si QDs. In addition to the five-orders-of-magnitude variation in the PL decay time, a systematic study on the temperature dependence of PL properties suggests that the energy structure of the smaller QDs does not retain an indirect band gap character. It is discussed that a 1.7 nm diameter is critical to undergo changes in energy structure from bulky to molecular configurations.

摘要

受发射波长可调的胶体半导体量子点(QD)的出现所驱动,其具有激子吸收峰的特性、出色的光稳定性以及在器件制造中的溶液可加工性,已成为纳米医学和光电子学发展的关键工具。已知直径大于2 nm且以氢原子封端的金刚石立方晶体硅(Si)量子点表现出体相继承的自旋和能谷特性。在此,我们展示了一个新发现的硅量子点尺寸区域,其中数百皮秒量级的快速辐射复合是光致发光(PL)的原因。尽管保留了与体相类似的晶体结构,但将其直径控制在1.1 - 1.7 nm范围内可实现强PL,在530 - 580 nm窗口具有连续的光谱可调性、无发射尾的窄光谱线宽以及光生载流子的快速弛豫。相比之下,直径大于1.8 nm的量子点显示出微秒量级的衰减时间,与之前的硅量子点一样。除了PL衰减时间有五个数量级的变化外,对PL特性的温度依赖性的系统研究表明,较小量子点的能量结构不保留间接带隙特征。据讨论,1.7 nm的直径对于能量结构从体相到分子构型的转变至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验