Suppr超能文献

REX 技术可用于分析和解码罗塞塔石蛋白介导的亲电信号轴。

REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins.

机构信息

Beverley East Riding of Yorkshire, United Kingdom.

Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.

出版信息

Methods Enzymol. 2020;633:203-230. doi: 10.1016/bs.mie.2019.02.039. Epub 2019 Mar 14.

Abstract

It is now clear that some cysteines on some proteins are highly tuned to react with electrophiles. Based on numerous studies, it is also established that electrophile sensing underpins rewiring of several critical signaling processes. These electrophile-sensing proteins, or privileged first responders (PFRs), are likely critically relevant for drug design. However, identifying PFRs remains a challenging and unsolved problem, despite the development of several high-throughput methods to ID proteins that react with electrophiles. More importantly, we remain unable to rank how different PFRs identified under different conditions relate to one another, in terms of sensing or signaling capacity. Here we evaluate different methods to assay sensing functions of proteins and discuss these methods in the context of developing a "ranking scheme." Based on theoretical and experimental evidence, we propose that T-REX-the only targeted-electrophile delivery tool presently available-is a reliable method to rank PFRs. Finally, we address to what extent electrophile sensing and downstream signaling are correlated. Based on our current data, we observe that such behaviors are indeed correlated. It is our hope that through this manuscript researchers from various arms of the stress signaling fields will focus on developing a quantitative understanding of precision electrophile labeling.

摘要

现在很清楚,一些蛋白质上的某些半胱氨酸高度适应与亲电试剂反应。基于大量研究,也已经确定亲电试剂感应是几种关键信号转导过程重排的基础。这些亲电试剂感应蛋白或特权第一反应者(PFRs)对于药物设计可能至关重要。然而,尽管已经开发出几种高通量方法来鉴定与亲电试剂反应的蛋白质,但识别 PFRs 仍然是一个具有挑战性且未解决的问题。更重要的是,我们仍然无法根据不同条件下鉴定的不同 PFRs 在感应或信号转导能力方面彼此之间的关系进行排序。在这里,我们评估了不同的方法来测定蛋白质的感应功能,并在开发“排序方案”的背景下讨论了这些方法。基于理论和实验证据,我们提出 T-REX-目前唯一可用的靶向亲电试剂递送工具-是对 PFRs 进行排序的可靠方法。最后,我们探讨了亲电试剂感应和下游信号转导之间的相关性。根据我们目前的数据,我们观察到这些行为确实存在相关性。我们希望通过这篇手稿,来自应激信号领域各个分支的研究人员将专注于开发对精确亲电标记的定量理解。

相似文献

1
REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins.
Methods Enzymol. 2020;633:203-230. doi: 10.1016/bs.mie.2019.02.039. Epub 2019 Mar 14.
2
An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX.
Acc Chem Res. 2021 Feb 2;54(3):618-631. doi: 10.1021/acs.accounts.0c00537. Epub 2020 Nov 23.
3
Getting the Right Grip? How Understanding Electrophile Selectivity Profiles Could Illuminate Our Understanding of Redox Signaling.
Antioxid Redox Signal. 2020 Nov 20;33(15):1077-1091. doi: 10.1089/ars.2019.7894. Epub 2019 Nov 4.
4
Privileged Electrophile Sensors: A Resource for Covalent Drug Development.
Cell Chem Biol. 2017 Jul 20;24(7):787-800. doi: 10.1016/j.chembiol.2017.05.023. Epub 2017 Jun 22.
5
Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.
ACS Cent Sci. 2018 Feb 28;4(2):246-259. doi: 10.1021/acscentsci.7b00556. Epub 2018 Jan 17.
6
Interrogating Precision Electrophile Signaling.
Trends Biochem Sci. 2019 Apr;44(4):380-381. doi: 10.1016/j.tibs.2019.01.006. Epub 2019 Feb 11.
9
Single-Protein-Specific Redox Targeting in Live Mammalian Cells and C. elegans.
Curr Protoc Chem Biol. 2018 Sep;10(3):e43. doi: 10.1002/cpch.43. Epub 2018 Aug 7.
10
The mRNA-Binding Protein HuR Is a Kinetically-Privileged Electrophile Sensor.
Helv Chim Acta. 2020 May;103(5). doi: 10.1002/hlca.202000041. Epub 2020 Apr 12.

引用本文的文献

1
Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities.
RSC Chem Biol. 2020 May 27;1(2):42-55. doi: 10.1039/d0cb00041h. eCollection 2020 Jun 1.

本文引用的文献

1
Weighing up the Selenocysteome Uncovers New Sec-rets.
Cell Chem Biol. 2018 Nov 15;25(11):1315-1317. doi: 10.1016/j.chembiol.2018.10.027.
2
Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles.
Trends Biochem Sci. 2019 Jan;44(1):75-89. doi: 10.1016/j.tibs.2018.09.014. Epub 2018 Oct 13.
3
A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.
Nature. 2018 Oct;562(7728):600-604. doi: 10.1038/s41586-018-0622-0. Epub 2018 Oct 15.
4
Human Diseases from Gain-of-Function Mutations in Disordered Protein Regions.
Cell. 2018 Sep 20;175(1):40-42. doi: 10.1016/j.cell.2018.08.059.
5
Redox Signaling by Reactive Electrophiles and Oxidants.
Chem Rev. 2018 Sep 26;118(18):8798-8888. doi: 10.1021/acs.chemrev.7b00698. Epub 2018 Aug 27.
6
Quantitative Profiling of Protein Carbonylations in Ferroptosis by an Aniline-Derived Probe.
J Am Chem Soc. 2018 Apr 4;140(13):4712-4720. doi: 10.1021/jacs.8b01462. Epub 2018 Mar 23.
7
Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.
ACS Cent Sci. 2018 Feb 28;4(2):246-259. doi: 10.1021/acscentsci.7b00556. Epub 2018 Jan 17.
8
Reactive Oxygen Species: A Key Constituent in Cancer Survival.
Biomark Insights. 2018 Feb 6;13:1177271918755391. doi: 10.1177/1177271918755391. eCollection 2018.
9
Global profiling of lysine reactivity and ligandability in the human proteome.
Nat Chem. 2017 Dec;9(12):1181-1190. doi: 10.1038/nchem.2826. Epub 2017 Jul 31.
10
Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry.
Oncotarget. 2017 Apr 20;8(31):51296-51316. doi: 10.18632/oncotarget.17261. eCollection 2017 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验