Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
BiomeHub, Florianópolis, Santa Catarina, Brazil.
Sci Rep. 2020 Feb 11;10(1):2362. doi: 10.1038/s41598-020-59276-w.
Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to define four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifier whose overall accuracy reached 85% on the test dataset, with per-class specificity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classification. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identified and characterized using computational models so that future work may unveil morphological associations with yeast virulence.
表型异质性是许多微生物包括酵母隐球菌属(Cryptococcus spp.)等全球传播的致命病原体的发展和生存的重要特征。在这里,我们应用扫描电子显微镜(SEM)来定义四种 Cryptococcus spp. 荚膜形态,分别为规则型、刺突型、光秃型和幻影型。这些形态在酵母分离株中以不同比例持续存在。为了评估这些形态的分布,我们实施了一个自动化管道,能够:(1)在 SEM 衍生图像中识别潜在的细胞相关对象;(2)计算对象级别的特征;(3)将这些对象分类到它们对应的类别中。所使用的机器学习方法是随机森林(RF)分类器,其在测试数据集上的整体准确性达到 85%,每个类别的特异性高于 90%,敏感性在 66%至 94%之间。此外,RF 模型表明,结构和纹理特征,例如对象面积、离心率和对比度,对于分类最为相关。RF 结果与这些特征的观察到的变化一致,也与 SEM 图像的直观检查一致。最后,我们的工作介绍了 Cryptococcus spp. 荚膜的形态变体。可以使用计算模型快速识别和表征这些变体,以便未来的工作可能揭示与酵母毒力相关的形态关联。